Question

In: Chemistry

The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g)...

The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K:

CO(g) + Cl2(g) COCl2(g)

Calculate the equilibrium partial pressures of all species when CO and Cl2, each at an intitial partial pressure of 1.65 atm, are introduced into an evacuated vessel at 600 K.

PCO = ______ atm

PCl2= _______ atm

PCOCl2 = _______ atm

Solutions

Expert Solution

Let's prepare the ICE table

p(CO) p(Cl2) p(COCl2)

initial 1.65 1.65 0

change -1x -1x +1x

equilibrium 1.65-1x 1.65-1x +1x

Equilibrium constant expression is

Kp = p(COCl2)/p(CO)*p(Cl2)

1.57 = (1*x)/((1.65-1*x)(1.65-1*x))

1.57 = (1*x)/(2.7225-3.3*x + 1*x^2)

4.27432-5.181*x + 1.57*x^2 = 1*x

4.27432-6.181*x + 1.57*x^2 = 0

Let's solve this quadratic equation

Comparing it with general form: (ax^2+bx+c=0)

a = 1.57

b = -6.181

c = 4.274

solution of quadratic equation is found by below formula

x = {-b + √(b^2-4*a*c)}/2a

x = {-b - √(b^2-4*a*c)}/2a

b^2-4*a*c = 11.36

putting value of d, solution can be written as:

x = {6.181 + √(11.36)}/3.14

x = {6.181 - √(11.36)}/3.14

solutions are :

x = 3.042 and x = 0.895

x can't be 3.042 as this will make the concentration negative.so,

x = 0.895

At equilibrium:

p(CO) = 1.65-1x = 1.65-1*0.89498 = 0.7550 atm

p(Cl2) = 1.65-1x = 1.65-1*0.89498 = 0.7550 atm

p(COCl2) = +1x = +1*0.89498 = 0.895 atm

p(CO) = 0.755 atm

p(Cl2) = 0.755 atm

p(COCl2) = 0.895 atm


Related Solutions

Consider the following reaction where Kp = 1.57 at 600 K: CO(g) + Cl2(g) COCl2(g) If...
Consider the following reaction where Kp = 1.57 at 600 K: CO(g) + Cl2(g) COCl2(g) If the three gases are mixed in a rigid container at 600 K so that the partial pressure of each gas is initially one atm, what will happen? Indicate True (T) or False (F) for each of the following: 1. A reaction will occur in which COCl2(g) is produced 2. Kp will decrease. 3. A reaction will occur in which CO is produced. 4. Q...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium concentrations of reactant and products when 0.576 moles of CO and 0.576 moles of Cl2 are introduced into a 1.00 L vessel at 600 K. [CO] = M [Cl2] = M [COCl2] = M
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <----->PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.56 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <<<----->>PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.01 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) +...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains 0.315 M COCl2, 6.38×10-2 M CO and 6.38×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.31×10-2 mol of Cl2(g) is added to the flask? [COCl2] =____ M [CO] =____ M [Cl2] = ____M
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) +...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains 0.294 M COCl2, 6.16×10-2 M CO and 6.16×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 4.50×10-2 mol of CO(g) is added to the flask? [COCl2] = M [CO] = M [Cl2] = M
1)The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) The equilibrium...
1)The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) The equilibrium constant, Kp, for the following reaction is 0.497 at 500 K: PCl5(g) <------ ------> PCl3(g) + Cl2(g) Calculate the equilibrium partial pressures of all species when PCl5(g) is introduced into an evacuated flask at a pressure of 1.14 atm at 500 K. PPCl5 = atm PPCl3 = atm PCl2 = atm 2) The equilibrium constant, Kp, for the following reaction is 55.6 at 698...
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2...
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2 (g) has a value of 4.6 x 109. If 0.40 mol of COCl2 is placed into a 10.0 L flask at 100.0 C, what will be the equilibrium concentration of all species? (A simplifying approximation that will make the solution of the resulting equation easier is to note that x is much less than 0.040mol/L. This means that 0.040 -x is approximately 0.040.)
1. The equilibrium constant, Kp, for the following reaction is 10.5 at 350 K: 2CH2Cl2(g) <--->CH4(g)...
1. The equilibrium constant, Kp, for the following reaction is 10.5 at 350 K: 2CH2Cl2(g) <--->CH4(g) + CCl4(g) Calculate the equilibrium partial pressures of all species when CH2Cl2(g) is introduced into an evacuated flask at a pressure of 0.865 atm at 350 K. PCH2Cl2 =____ atm PCH4 =____ atm PCCl4 =____ atm 2. The equilibrium constant, Kp, for the following reaction is 0.215 at 673 K: NH4I(s) <----> NH3(g) + HI(g) Calculate the equilibrium partial pressure of HI when 0.413...
1.For the reaction, PCl5(g) <-----> PCl3(g) + Cl2(g)          Kp = 24.6 at 500 K calculate the equilibrium...
1.For the reaction, PCl5(g) <-----> PCl3(g) + Cl2(g)          Kp = 24.6 at 500 K calculate the equilibrium partial pressures of the reactants and products if the initial pressures are PPCl5 = 0.610 atm, PPCl3 = 0.400 atm and PCl2 = 0.000 atm. PPCl5 = PPCl3 = PCl2 = 2. H2O(g) + Cl2O(g) <-----> 2HClO(g)          Kc = 0.14 at 298.15 K calculate the equilibrium concentrations of the reactants and products if the initial concentrations are [H2O(g)] = 0.00482 mol L-1, [Cl2O(g)] = 0.00482...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT