Question

In: Mechanical Engineering

4. A Rankine cylce operates between pressures of 2 psia and 1500 psia. If the steam...

4. A Rankine cylce operates between pressures of 2 psia and 1500 psia. If the steam entering the turbine is superheated to 800oF, calculate the efficiency of the cycle. Neglect pump work. Note: The peak of the superheat phase of this cycle is outside the range of the text steam tables and is difficult to locate on the text Mollier chart since it does not have a 1500 psia constant pressure line. Please use the following information taken from the Combustion Engineering steam tables. At 1500 psia and 800 oF, the steam would have an h = 1364 Btu/lbm and an s = 1.5073 Btu/lbm oR. You should be able to find the value of h at 2 psia and an s = 1.5073 Btu/lbm oR from the text steam tables or the Mollier chart. Then you can calculate the parameters requested by questions 4 and 5.

State your answer as a percent to one decimal place. Example: 35.2

5. A Rankine cycle operates between pressures of 2 psia and 1500 psia. If the steam entering the turbine is superheated to 800oF, calculate the work produced per pound mass of steam. Neglect pump work.

State your answer to two decimal places. Example:125.25

I WILL RATE YOU

Solutions

Expert Solution


Related Solutions

A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 1 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency. Use steam tables
An ideal Rankine cycle operates between 2700 psia and 1050° F at throttle and 4 psia...
An ideal Rankine cycle operates between 2700 psia and 1050° F at throttle and 4 psia in the condenser. One high pressure open type feed-water heater and one low pressure open type feed water heater are placed at 700 psia and 190 psia respectively. a) Draw the schematic flow and T-S diagrams of the cycle [3] b) Calculate mass flow rate in the both heaters. [2] c) Calculate heat rejected. [2] d) Calculate cycle efficiency. [4] e) Calculate work ratio....
8. In a Rankine cycle steam enters the turbine at 900 psia and 1000oF and exhausts...
8. In a Rankine cycle steam enters the turbine at 900 psia and 1000oF and exhausts at 1 psia. What is the thermal efficiency? Neglect pump work. State your answer as a percent to one decimal place. Example: 25.2 9. Steam is expanded to 12% moisture at 1 psia in a Rankine cycle. If the initial pressure is 400 psia, what is the efficiency? Neglect pump work. Express your answer as a percent to one decimal place. Example: 32.5 I...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine inlet temperature of 526 oF. The steam is isentropically expanded through the turbine to 15 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the enthalpy at the turbine inlet, in BTU/lbm, under these operating conditions. State your answer in whole numbers.
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine inlet temperature of 572 oF. The steam is isentropically expanded through the turbine to 5 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the percent moisture at the turbine outlet under these operating conditions. State your answer in whole numbers.
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at 3 MPa and “648” K and is condensed in the condenser at a pressure of 46 kPa. You are assigned on a project to improve the thermal efficiency of this plant. a) Draw the schematic of the plant and determine the thermal efficiency of the practical cycle assuming that the efficiencies of pump and turbine are 0.75 and 0.7, respectively. ( b) Draw a...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6 MPa at 700 ºC and the condenser at 10 kPa. Turbine has isentropic efficiency of 85% and pumps have isentropic efficiency of 90%. Steam is extracted from the turbine at 0.6 MPa to heat the feedwater in an open feedwater heater. Water leaves the open feedwater heater as saturated liquid. a) Draw the system with labels and show the ideal and the non-ideal cycle...
A steam power plant operates with a maximum pressure of 3500 psia and maximum temperature of...
A steam power plant operates with a maximum pressure of 3500 psia and maximum temperature of 1050 oF. Assume a simple Rankine cycle, condenser pressure is 10 psia, and turbomachinery is isentropic. Turbine work in Btu/lb Pump work in Btu/lb Heat addition in steam generator in Btu/lb Cycle thermal efficiency
a steam power plant operates on a superheated rankine cycle where steam at 10kg/s entering the...
a steam power plant operates on a superheated rankine cycle where steam at 10kg/s entering the turbine at 5MPa and 375 degree celcius and leaving the turbine at saturated vapor at pressure 100 times less then initial. If the compressor efficiency is 85% , I) sketch the cycle of T-s diagram ii) calculate the temperature and pressure for all points in the cycle iii) calculate the compressor work iv) calculate the turbine work and turbine efficiency v.) calculate the thermal...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT