Question

In: Mechanical Engineering

8. In a Rankine cycle steam enters the turbine at 900 psia and 1000oF and exhausts...

8. In a Rankine cycle steam enters the turbine at 900 psia and 1000oF and exhausts at 1 psia. What is the thermal efficiency? Neglect pump work.

State your answer as a percent to one decimal place. Example: 25.2

9. Steam is expanded to 12% moisture at 1 psia in a Rankine cycle. If the initial pressure is 400 psia, what is the efficiency? Neglect pump work.

Express your answer as a percent to one decimal place. Example: 32.5

I WILL RATE YOU

Solutions

Expert Solution

for finding the enthalpy from moiller diagram i m first convert pressure into bar bcoz i have moiller diagaram in si units so to take reading from moiller diagram i am first take itersection point of given pressure and temp. in qsn 8 and in qsn 9 i take intersection point of quality of steam and pressure .. at intersection point digaram shows me enthalpy and entropy in Y and X axis ..

similarly to take value of point 3 i have given formula in the solution .. hope you know how to take reading from moiller diagram ..


Related Solutions

An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine inlet temperature of 572 oF. The steam is isentropically expanded through the turbine to 5 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the percent moisture at the turbine outlet under these operating conditions. State your answer in whole numbers.
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at 3 MPa and “648” K and is condensed in the condenser at a pressure of 46 kPa. You are assigned on a project to improve the thermal efficiency of this plant. a) Draw the schematic of the plant and determine the thermal efficiency of the practical cycle assuming that the efficiencies of pump and turbine are 0.75 and 0.7, respectively. ( b) Draw a...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6 MPa at 700 ºC and the condenser at 10 kPa. Turbine has isentropic efficiency of 85% and pumps have isentropic efficiency of 90%. Steam is extracted from the turbine at 0.6 MPa to heat the feedwater in an open feedwater heater. Water leaves the open feedwater heater as saturated liquid. a) Draw the system with labels and show the ideal and the non-ideal cycle...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: #Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat. [25] b) Calculate the same quantities assuming that the pump and each turbine...
Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa.
 Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power output of the cycle is 100 MW. determine the thermal efficiency of the cycle
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) For a pressure of 7 bar right after the first stage turbine in the ideal Rankine cycle, create two plots: thermal efficiency as a function of the reheat temperature from 200 °C to 500 °C; and the...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C. Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT