In: Statistics and Probability
A university would like to estimate the proportion of fans who purchase concessions at the first basketball game of the season. The basketball facility has a capacity of 3 comma 600 and is routinely sold out. It was discovered that a total of 200 fans out of a random sample of 500 purchased concessions during the game. Construct a 95% confidence interval to estimate the proportion of fans who purchased concessions during the game. The 95% confidence interval to estimate the proportion of fans who purchased concessions during the game is left parenthesis nothing comma nothing right parenthesis . (Round to three decimal places as needed.)
Level of Significance,   α =   
0.05          
Number of Items of Interest,   x =  
200          
Sample Size,   n =    500  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.400          
z -value =   Zα/2 =    1.960   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0219          
margin of error , E = Z*SE =    1.960  
*   0.0219   =   0.0429
          
       
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.400  
-   0.0429   =   0.3571
Interval Upper Limit = p̂ + E =   0.400  
+   0.0429   =   0.4429
          
       
so, confidence interval is (   0.357 < p <
   0.443 )