Question

In: Statistics and Probability

Consider the hypothesis test with null hypothesis μ1=μ2 and alternative hypothesis μ1 > μ2.Suppose that sample...

Consider the hypothesis test with null hypothesis μ1=μ2 and alternative hypothesis μ1 > μ2.Suppose that sample sizes n1 = 10 and n2 =10, that the sample means are 4.9 and 2.8 respectively, and that the sample variances are 2 and 3 respectively. Assume that the population variances are equal and that the data are drawn from normal distributions.

a) Test the hypothesis that at α= 0.05 and provide a conclusion statement

b) Provide an adequate confidence interval with 95% confidence level. c) Do your answers in a) and b) coincide? Explain.

Solutions

Expert Solution

a)

Ho :   µ1 - µ2 =   0                  
Ha :   µ1-µ2 >   0                  
                          
Level of Significance ,    α =    0.05                  
                          
Sample #1   ---->   1                  
mean of sample 1,    x̅1=   4.90                  
standard deviation of sample 1,   s1 =    1.41                  
size of sample 1,    n1=   10                  
                          
Sample #2   ---->   2                  
mean of sample 2,    x̅2=   2.80                  
standard deviation of sample 2,   s2 =    1.73                  
size of sample 2,    n2=   10                  
                          
difference in sample means =    x̅1-x̅2 =    4.9000   -   2.8   =   2.10  
                          
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 - 1)s2²]/(n1+n2-2)) =    1.5811                  
std error , SE =    Sp*√(1/n1+1/n2) =    0.7071                  
                          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   2.1000   -   0   ) /    0.71   =   2.9698
                          
Degree of freedom, DF=   n1+n2-2 =    18                  
t-critical value , t* =        1.734   (excel function: =t.inv(α,df)              
Decision:   | t-stat | > | critical value |, so, Reject Ho                      
p-value =        0.0041   [excel function: =T.DIST.RT(t stat,df) ]              
Conclusion:     p-value <α , Reject null hypothesis                      

There is enough evidence to that  μ1 > μ2

b)

Degree of freedom, DF=   n1+n2-2 =    18              
t-critical value =    t α/2 =    2.1009   (excel formula =t.inv(α/2,df)          
                      
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 - 1)s2²]/(n1+n2-2)) =    1.5811              
                      
std error , SE =    Sp*√(1/n1+1/n2) =    0.7071              
margin of error, E = t*SE =    2.1009   *   0.71   =   1.49  
                      
difference of means =    x̅1-x̅2 =    4.9000   -   2.800   =   2.1000
confidence interval is                       
Interval Lower Limit=   (x̅1-x̅2) - E =    2.1000   -   1.4856   =   0.6144
Interval Upper Limit=   (x̅1-x̅2) + E =    2.1000   +   1.4856   =   3.5856

since, both ends of CI is positive, so, reject Ho

yes, both answers coincide


Related Solutions

Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.8 s2 = 8.2 (a) What is the value of the test statistic? 2.153 correct (b) What is the degrees of freedom for the t distribution? (Round your answer...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.9 s2 = 8.1 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
Below you will find the null and alternative hypothesis for an ANOVA: H0: μ1 = μ2...
Below you will find the null and alternative hypothesis for an ANOVA: H0: μ1 = μ2 = μ3 H1: at least one of the means is different. For Data Set B, based on the p-value and F vs. F critical values we found above, do we fail to reject the null hypothesis? Or, do we reject the null hypothesis? Group of answer choices Fail to Reject Reject Using Data Set B, run the Single Factor ANOVA in Excel, as we...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 23 and a sample standard deviation of 4.6. A random sample of 8 observations from another population revealed a sample mean of 28 and a sample standard deviation of 3.6. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 12 observations from one population revealed a sample mean of 25 and a sample standard deviation of 3.5. A random sample of 9 observations from another population revealed a sample mean of 30 and a sample standard deviation of 3.5. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 9 observations from one population revealed a sample mean of 22 and a sample standard deviation of 3.9. A random sample of 9 observations from another population revealed a sample mean of 27 and a sample standard deviation of 4.1. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 23 and a sample standard deviation of 1.1. A random sample of 4 observations from another population revealed a sample mean of 24 and a sample standard deviation of 1.3. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from Population 1 revealed a sample mean of 21 and sample deviation of 5. A random sample of 4 observations from Population 2 revealed a sample mean of 22 and sample standard deviation of 5.1. The underlying population standard deviations are unknown but are assumed to be equal. At the .05 significance level, is there a difference between...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from one population revealed a sample mean of 23 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 27 and a sample standard deviation of 3.6. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are:    H0: μ1 ≤ μ2 H1: μ1 > μ2 A...
The null and alternate hypotheses are:    H0: μ1 ≤ μ2 H1: μ1 > μ2 A random sample of 26 items from the first population showed a mean of 114 and a standard deviation of 9. A sample of 15 items for the second population showed a mean of 99 and a standard deviation of 7. Assume the sample populations do not have equal standard deviations. a. Find the degrees of freedom for unequal variance test. (Round down your answer...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT