In: Finance
Consider the following fixed-rate, level-payment mortgage: maturity = 360 months amount borrowed = $100,000 annual mortgage rate = 10%
(a) Construct an amortization schedule for the first 10 months.
(b) What will the mortgage balance be at the end of the 10th month assuming no prepayments?
| (a) | Months | Beginning mortgage loan | Interest Expense | Monthly payment | Reduction in principal | Ending mortgage balance | |||||||||
| a | b=a*10%*1/12 | c | d=c-b | e=a-d | |||||||||||
| 1 | $ 1,00,000 | $ 833.33 | $ 877.54 | $ 44.21 | $ 99,955.79 | ||||||||||
| 2 | $ 99,955.79 | $ 832.96 | $ 877.54 | $ 44.58 | $ 99,911.21 | ||||||||||
| 3 | $ 99,911.21 | $ 832.59 | $ 877.54 | $ 44.95 | $ 99,866.27 | ||||||||||
| 4 | $ 99,866.27 | $ 832.22 | $ 877.54 | $ 45.32 | $ 99,820.94 | ||||||||||
| 5 | $ 99,820.94 | $ 831.84 | $ 877.54 | $ 45.70 | $ 99,775.24 | ||||||||||
| 6 | $ 99,775.24 | $ 831.46 | $ 877.54 | $ 46.08 | $ 99,729.16 | ||||||||||
| 7 | $ 99,729.16 | $ 831.08 | $ 877.54 | $ 46.47 | $ 99,682.69 | ||||||||||
| 8 | $ 99,682.69 | $ 830.69 | $ 877.54 | $ 46.85 | $ 99,635.84 | ||||||||||
| 9 | $ 99,635.84 | $ 830.30 | $ 877.54 | $ 47.24 | $ 99,588.60 | ||||||||||
| 10 | $ 99,588.60 | $ 829.90 | $ 877.54 | $ 47.64 | $ 99,540.96 | ||||||||||
| Total | $ 8,316.38 | $ 8,775.42 | $ 459.04 | ||||||||||||
| Working: | |||||||||||||||
| # 1 | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||||||
| = | (1-(1+0.008333)^-360)/0.008333 | i | 10%/12 | = | 0.008333 | ||||||||||
| = | 113.954658 | n | 360 | ||||||||||||
| # 2 | Monthly Payment | = | Mortgage loan / Present value of annuity of 1 | ||||||||||||
| = | $ 1,00,000 | / | 113.954658 | ||||||||||||
| = | $ 877.54 | ||||||||||||||
| (b) | Mortgage balance be at the end of the 10th month is | $ 99,540.96 | |||||||||||||