In: Statistics and Probability
Find the value of the standard normal random variable ?, called ?0 such that:
(a) ?(?≤?0)=0.8651
?0=
(b) ?(−?0≤?≤?0)=0.2858
?0=
(c) ?(−?0≤?≤?0)=0.6074
?0=
(d) ?(?≥?0)=0.0888
?0=
(e) ?(−?0≤?≤0)=0.3981
?0=
(f) ?(−1.24≤?≤?0)=0.4718
?0=
a)
P(Z <= z0) = 0.8651
From Z table, z-score for the probability of 0.8651 is 1.10
z0 = 1.10
b)
P ( -z0 <= Z <= z0) = 0.2858
P(Z <= z0) - P(Z <= -z0) = 0.2858
P(Z <= z0) - ( 1 - P(Z < z0) ) = 0.2858
P(Z <= z0) - 1 + P(Z < z0) = 0.2858
2 P(Z < z0) = 1.2858
P(Z < z0) = 0.6429
From Z table, z-score for the probability of 0.6429 is 0.37
z0 = 0.37
c)
P ( -z0 <= Z <= z0) = 0.6074
P(Z <= z0) - P(Z <= -z0) = 0.6074
P(Z <= z0) - ( 1 - P(Z < z0) ) = 0.6074
P(Z <= z0) - 1 + P(Z < z0) = 0.6074
2 P(Z < z0) = 1.6074
P(Z < z0) = 0.8037
From Z table, z-score for the probability of 0.8037 is 0.85
z0 = 0.85
d)
P(Z >= z0) = 0.0888
P(Z <= z0) = 1 - 0.0888
P(Z <= z0) = 0.9112
From Z table, z-score for the probability of 0.9112 is 1.35
z0 = 1.35
e)
P ( -z0 <= Z <= 0) = 0.6981
P(Z <= 0) - P(Z <= -z0) = 0.3981
P(Z <= 0) - ( 1 - P(Z < z0) ) = 0.3981
P(Z <= 0) - 1 + P(Z < z0) = 0.3981
P(Z < z0) = 1.3981 + P(Z <= 0)
P(Z < z0) = 1.3981 - 0.5
P(Z < z0) = 0.8981
From Z table, z-score for the probability of 0.8981 is 1.27
z0 = 1.27
f)
P(-1.24 <= Z <= z0) = 0.4718
P(Z <= z0) - P(Z < -1.24) = 0.4718
P(Z <= z0) - 0.1075 = 0.4718
P(Z <= z0) = 0.5793
From Z table , z-score for the probability of 0.5793 is 0.20
z0 = 0.20