Question

In: Math

Find the value of the standard normal random variable zz , called z0z0 such that: (a)...

Find the value of the standard normal random variable zz , called z0z0 such that:

(a) P(zz0)=0.9999P(z≤z0)=0.9999
z0=z0=

(b) P(−z0≤zz0)=0.922P(−z0≤z≤z0)=0.922
z0=z0=

(c) P(−z0≤zz0)=0.3954P(−z0≤z≤z0)=0.3954
z0=z0=

(d) P(zz0)=0.4497P(z≥z0)=0.4497
z0=z0=

(e) P(−z0≤z≤0)=0.3225P(−z0≤z≤0)=0.3225
z0=z0=

(f) P(−1.66≤zz0)=0.5474P(−1.66≤z≤z0)=0.5474
z0=z0=

Solutions

Expert Solution

solution=

a. P (z ≤ z0) = 0.9999=P(z ≥ z0) = 1-0.9999 = 0.0001 = P(z ≤ -z0) = 0.0001
From tables z0 = -3.72

b. P (-z0 ≤ z ≤ z0) = .922 = P (z ≤ z0)- P (z ≤ -z0) = P (z ≤ z0)- P (z ≥ z0) =
P (z ≤ z0)-(1- P (z ≤ z0))
P (z ≤ z0) = (0.922+1)/2=0.961
From tables z0 = 1.76

c. P (-z0 ≤ z ≤ z0) = 0.3954
the procedure is the same that exercise b P (z ≤ z0) = (0.3954 +1)/2=0.6977
From tables the nearest value is z0 = 0.52

d. P (z ≥ z0) = 0.4497 = 1- P (z ≤ z0)
P (z ≤ z0) = 0.4497
From tables value z0 = 0.15

e. P (-z0 ≤ z ≤ 0) = 0.3225= P (z ≤ 0) - P (z ≤ -z0) = P (z ≤ 0) - P (z ≥ z0) =
P (z ≤ 0) - (1- P (z ≤ z0))
P (z ≤ z0) = 0.3225 + 1 - P (z ≤ 0)= 0.3225 + 1 - 0.5 = 0.8225
From tables z0 = 0.92

f. P (-1.66 ≤ z ≤ z0) = 0.5474 = P (z ≤ z0) - P (z ≤ -1.66) = P (z ≤ z0) - P (z ≥ 1.66) =
P (z ≤ z0) - (1- P (z ≤ 1.66))
P (z ≤ z0) = 0.5474 + 1 - P(z ≤ 1.66) = 0.5474 + 1 - 0.9515 = 0.5959
From tables the nearest value is z0 = 0.24


Related Solutions

Find the value of the standard normal random variable z , called z 0 such that:...
Find the value of the standard normal random variable z , called z 0 such that: a)  ?(?≤?0)=0.8998 ?0= (b)  ?(−?0≤?≤?0)=0.676 ?0= (c)  ?(−?0≤?≤?0)=0.198 ?0= (d)  ?(?≥?0)=0.1895 ?0= (e)  ?(−?0≤?≤0)=0.4425 ?0= (f)  ?(−1.11≤?≤?0)=0.8515 ?0=
Find the value of the standard normal random variable z, called z subscript 0, such that:...
Find the value of the standard normal random variable z, called z subscript 0, such that: P left parenthesis z greater or equal than z subscript 0 right parenthesis equals.20 Find the value of the standard normal random variable z , called z subscript 0 , such that Find the value of the standard normal random variable z , called z subscript 0 , such that Find the value of the standard normal random variable z , called z subscript...
Find the value of the standard normal random variable z, called z subscript 0, such that:...
Find the value of the standard normal random variable z, called z subscript 0, such that: P left parenthesis z greater or equal than z subscript 0 right parenthesis equals.20 Find the value of the standard normal random variable z , called z subscript 0 , such that Find the value of the standard normal random variable z , called z subscript 0 , such that Find the value of the standard normal random variable z , called z subscript...
Find the value of the standard normal random variable z, called z subscript 0, such that:...
Find the value of the standard normal random variable z, called z subscript 0, such that: P left parenthesis z greater or equal than z subscript 0 right parenthesis equals.20 Find the value of the standard normal random variable z , called z subscript 0 , such that Find the value of the standard normal random variable z , called z subscript 0 , such that Find the value of the standard normal random variable z , called z subscript...
Find the value of the standard normal random variable ?, called ?0 such that: (a)  ?(?≤?0)=0.8651 ?0=...
Find the value of the standard normal random variable ?, called ?0 such that: (a)  ?(?≤?0)=0.8651 ?0= (b)  ?(−?0≤?≤?0)=0.2858 ?0= (c)  ?(−?0≤?≤?0)=0.6074 ?0= (d)  ?(?≥?0)=0.0888 ?0= (e)  ?(−?0≤?≤0)=0.3981 ?0= (f)  ?(−1.24≤?≤?0)=0.4718 ?0=
Find the value of the probability of the standard normal random variable Z corresponding to this...
Find the value of the probability of the standard normal random variable Z corresponding to this area. (Round your answer to four decimal places.) P(−1.68 < Z < 1.23) =?
If Z is a standard normal random variable, find the value z0 for the following probabilities....
If Z is a standard normal random variable, find the value z0 for the following probabilities. (Round your answers to two decimal places.) (a) P(Z > z0) = 0.5 z0 = (b) P(Z < z0) = 0.9279 z0 = (c) P(−z0 < Z < z0) = 0.90 z0 = (d) P(−z0 < Z < z0) = 0.99 z0 =
Find a value of the standard normal random variable z ​, call it z 0z0​, a....
Find a value of the standard normal random variable z ​, call it z 0z0​, a. ​ P(zless than or equals≤z 0z0​)equals=0.0703 e. ​ P(minus−z 0z0less than or equals≤zless than or equals≤​0)equals=0.2960 b. ​ P(minus−z 0z0less than or equals≤zless than or equals≤z 0z0​)equals=0.95 f. ​ P(minus−22less than<zless than<z 0z0​)equals=0.9516 c. ​P(minus−z 0z0less than or equals≤zless than or equals≤z 0z0​)equals=0.99 g. ​P(zless than<z 0z0​)equals=0.5 d. ​P(minus−z 0z0less than or equals≤zless than or equals≤z 0z0​)equals=0.8586 h. ​P(zless than or equals≤z 0z0​)equals=0.0065
Find a value of the standard normal random variable z ​, call it z 0​, such...
Find a value of the standard normal random variable z ​, call it z 0​, such that the following probabilities are satisfied. a. ​P(z less than or equals z 0​) equals 0.3027 b. ​P(minus z 0less than or equals z less than z 0​) equals 0.1518 c. ​P(z less than or equals z 0​) equals0.7659 d. ​P(z 0 less than or equals z less than or equals​ 0) equals 0.2706 e. ​P( minus z 0 less than or equals z...
Use an appropriate normal random variable. -Find the value of Z such that the area to...
Use an appropriate normal random variable. -Find the value of Z such that the area to the right of the Z is 0.72. -The middle 99% of the standard normal distribution is contained between −Z and Z. Find these values. -Suppose that the area that can be painted using a single can of spray paint is slightly variable and follows a normal distribution with a mean of 25 square feet and a standard deviation of 3 square feet. What is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT