Question

In: Statistics and Probability

Problem 2 (25 %) Use multiple regression to estimate a model for the share of the...

Problem 2 (25 %)
Use multiple regression to estimate a model for the share of the shadow economy of the
form:
SHADOWi = β0 + β1INCOMEi + β2UNABLEi + εi
i = 1, …, 28
List the assumptions for the regression model, and explain the output provided by Excel.
Provide a nice and easy to read output.
 How is the R2 and the standard error calculated what is the interpretation?
 What signs are found for the estimated coefficients of the included variables and what do
you think should be expected?
 How many of the variables are significant and what is the interpretation of the p-value?
 Finally, inspect the plots of residual. Is white noise observed?
Estimate now a new multiple regression model of the form:
SHADOWi = β0 + β1INCOMEi + β2UNABLEi + β3UNEMPi + εi
i = 1, …, 28
Again set up a nice presentation of your Excel output.
 Compare the two models estimated with regard to R2, the standard error, the significance
of the estimated coefficients, and the plots of residuals
 Which of the two models performs best?


DATA TABLE

Share of the shadow economy, % GDP per capita, (1,000) € Unable to afford life expenses, % Long term unemployment rate, % Life satisfaction (1 to 10) Income quintile share ratio (S80/S20) Location: W = West, E = East, M = Mediterranian
Country SHADOW INCOME UNABLE UNEMP SATISFACTION RATIO LOCATION
Belgium 16,8 30,7 25,4 3,4 7,4 3,9 W
Bulgaria 31,9 12,0 68,6 6,8 5,5 6,1 E
Czech Republic 16,0 20,7 42,4 3,0 6,4 3,5 E
Denmark 13,4 32,1 28,2 2,1 8,4 4,5 W
Germany 13,3 31,5 33,4 2,5 7,2 4,3 W
Estonia 28,2 18,2 44,7 5,5 6,3 5,4 E
Ireland 12,7 32,9 31,2 9,1 7,4 5,2 W
Greece 24,0 19,2 40,5 14,4 6,2 6,6 M
Spain 19,2 24,4 42,1 11,1 7,5 7,2 M
France 10,8 27,7 33,0 4,1 7,2 4,5 W
Croatia 29,0 15,7 67,3 10,3 6,8 5,4 E
Italy 21,6 25,6 42,5 5,7 6,9 5,5 M
Cyprus 25,6 23,6 50,5 3,6 7,2 4,7 M
Latvia 26,1 16,4 73,6 7,8 6,2 6,5 E
Lithuania 28,5 18,3 60,4 6,6 6,7 5,3 E
Luxembourg 8,2 67,1 24,8 1,6 7,8 4,1 W
Hungary 22,5 17,0 74,3 4,9 5,8 4,0 E
Malta 25,3 21,9 25,0 3,0 7,2 3,9 M
Netherlands 9,5 32,6 22,0 1,8 7,7 3,6 W
Austria 7,6 33,1 22,2 1,1 7,7 4,2 W
Poland 24,4 17,1 54,1 4,1 7,1 4,9 E
Portugal 19,4 19,4 35,9 7,7 6,8 5,8 M
Romania 29,1 12,8 53,1 3,2 6,7 6,3 E
Slovenia 23,6 21,4 45,7 4,3 7,0 3,4 E
Slovakia 15,5 19,4 36,1 9,4 6,4 3,7 E
Finland 13,3 29,4 27,9 1,6 8,1 3,7 W
Sweden 14,3 32,2 17,6 1,5 8,0 3,7 W
United Kingdom 10,1 26,8 42,9 2,7 7,3 5,4 W
Source: Eurostat
Source: On the black economy: Friedich Schneider (2013): "The Shadow Economy in Europe 2013" Universität Linz, ATKearney and VISA.

Solutions

Expert Solution

List the assumptions for the regression model

1) Normality distributed .

2) Variance constant

3) relationship between two or more variable must be linear .

4) independence .

For Model 1

Model1 is given by

SHADOW=182.8353 -0.30515 *INCOME + 0.207074*UNABLE

model 1 R-square = 0.6705

Adjusted R-square =0.6441

FOr Model 2

Model1 is given by

SHADOW=174.63 -0.2912*INCOME + 0.1997*UNABLE +0.1529*UNEMP

model 1 R-square = 0.6744

Adjusted R-square =0.6337

Comment - Using both the model we say that Model1 is better than model 2 becuse Adjusted R-square is better than model 2.


Related Solutions

When we estimate a linear multiple regression model (including a linear simple regression model), it appears...
When we estimate a linear multiple regression model (including a linear simple regression model), it appears that the calculation of the coefficient of determination, R2, for this model can be accomplished by using the squared sample correlation coefficient between the original values and the predicted values of the dependent variable of this model. Is this statement true? If yes, why? If not, why not? Please use either matrix algebra or algebra to support your reasoning.
Use the date set in SLEEP75 to estimate the multiple regression model sleep= β0+β1totwrk+β2educ+β3male+u. and answer...
Use the date set in SLEEP75 to estimate the multiple regression model sleep= β0+β1totwrk+β2educ+β3male+u. and answer the following questions. Here the variable sleep is total minutes per week spent at night, totwrk is total weekly minutes spent working, educ and age are measured in years, and male is a gender dummy. please give some good details (8 points) In the estimation, β0=__________, β1=__________, β2=__________, β3=__________. (2 points) All other factors being equal, is there evidence that men sleep more than...
Use multiple regression with dummies, since the data is seasonal for the regression model. Year Sales...
Use multiple regression with dummies, since the data is seasonal for the regression model. Year Sales (Millions) Trend 2014 1 480.0 1 2014 Q2 864.0 2 2014 Q3 942.0 3 2014 Q4 1,100.0 4 2015 Q1 1,200.0 5 2015 Q2 1,900.0 6 2015 Q3 1,900.0 7 2015 Q4 1,300.0 8 2016 Q1 1,200.0 9 2016 Q2 1,500.0 10 2016 Q3 1,200.0 11 2016 Q4 500.0 12 2017 Q1 356.0 13 2017 Q2 1,300.0 14 2017 Q3 1,000.0 15 2017 Q4...
Estimate the multiple linear regression equation     for the given data    1              2        &n
Estimate the multiple linear regression equation     for the given data    1              2              3               4 10             1              2               3 12            18            24             30 Estimate the multiple linear regression equation y with overparenthesis on top equals b subscript 0 plus b subscript 1 x subscript 1 plus b subscript 2 x subscript 2 for the given data x subscript 1 1 2 3 4 x subscript 2 10 1 2 3 y 12 18 24 30
In a multiple linear regression model with 2 predictors (X1and X2),                               &n
In a multiple linear regression model with 2 predictors (X1and X2),                                TRUE     or     FALSE In a multiple linear regression model with 2 predictors (X1and X2), then SSR(X1)+SSR(X2|X1) = SSTO–SSE(X1,X2)   TRUE     or    FALSE In a multiple linear regression model with 2 predictors (X1and X2), if X1and X2are uncorrelated, SSR(X1) = SSR(X1|X2).       TRUE     or    FALSE In a multiple linear regression model with 2 predictors (X1and X2), SSR(X1) + SSR(X2|X1) = SSR(X2) + SSR(X1|X2).       TRUE     or    FALSE In simple linear regression, then (X’X)-1is  2x2.    TRUE    or     FALSE In simple linear regression, the hat-matrix is 2x2.    TRUE    or     FALSE
Discuss the underlying assumptions of a simple linear regression model; multiple regression model; and polynomial regression.
Discuss the underlying assumptions of a simple linear regression model; multiple regression model; and polynomial regression.
Use the following data to develop a multiple regression model to predict from and . Discuss...
Use the following data to develop a multiple regression model to predict from and . Discuss the output, including comments about the overall strength of the model, the significance of the regression coefficients, and other indicators of model fit. y x1 x2 198 29 1.64 214 71 2.81 211 54 2.22 219 73 2.70 184 67 1.57 167 32 1.63 201 47 1.99 204 43 2.14 190 60 2.04 222 32 2.93 197 34 2.15 Appendix A Statistical Tables *(Round...
Use Excel to develop a multiple regression model to predict Cost of Materials by Number of...
Use Excel to develop a multiple regression model to predict Cost of Materials by Number of Employees, New Capital Expenditures, Value Added by Manufacture, and End-of-Year Inventories. Locate the observed value that is in Industrial Group 12 and has 7 employees. Based on the model and the multiple regression output, what is the corresponding residual of this observation? Write your answer as a number, round to 2 decimal places. SIC Code No. Emp. No. Prod. Wkrs. Value Added by Mfg....
b) Use a multiple regression model with dummy variables as follows to develop an equation to...
b) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank (Example: -300). If the constant...
1. Distinguish between a bivariate regression model and a multiple regression.
1. Distinguish between a bivariate regression model and a multiple regression.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT