In: Math
In a multiple linear regression model with 2 predictors (X1and X2), TRUE or FALSE
In a multiple linear regression model with 2 predictors (X1and X2), then SSR(X1)+SSR(X2|X1) = SSTO–SSE(X1,X2) TRUE or FALSE
In a multiple linear regression model with 2 predictors (X1and X2), if X1and X2are uncorrelated, SSR(X1) = SSR(X1|X2). TRUE or FALSE
In a multiple linear regression model with 2 predictors (X1and X2), SSR(X1) + SSR(X2|X1) = SSR(X2) + SSR(X1|X2). TRUE or FALSE
In simple linear regression, then (X’X)-1is 2x2. TRUE or FALSE
In simple linear regression, the hat-matrix is 2x2. TRUE or FALSE
-> In a multiple linear regression model with 2 predictors (X1and X2), then SSR(X1)+SSR(X2|X1) = SSTO–SSE(X1,X2)
For Multiple Linear Regression Equation:
SSTO = SSR(X1, X2) + SSE(X1, X2) -------------- (1)
Now,
SSR(X2|X1) = SSR(X1, X2) − SSR(X1) => SSR(X1, X2) = SSR(X2|X1) + SSR(X1)
Putting in (1) we get
SSTO = SSR(X2|X1) + SSR(X1) + SSE(X1, X2)
=> SSTO = SSR(X2|X1) + SSR(X1) + SSE(X1, X2)
=> SSTO - SSE(X1, X2) = SSR(X2|X1) + SSR(X1)
Hence Above statement is True
-> In a multiple linear regression model with 2 predictors (X1and X2), if X1and X2 are uncorrelated, SSR(X1) = SSR(X1|X2)
Consider the 3 models: (1) E(Yi) = bo + b1Xi1
(2) E(Yi) = bo + b2Xi2
(3) E(Yi) = b0 + b1Xi1 + b2Xi2
X1 and X2 are uncorrelated (r12 ≈ 0), then
-> b1 will be the same for models (1) and (3)
-> b2 will be the same for models (2) and (3)
SSR(X1|X2) = SSR(X1) and
SSR(X2|X1) = SSR(X2)
Hence Above Statement is True
-> In a multiple linear regression model with 2 predictors (X1and X2), SSR(X1) + SSR(X2|X1) = SSR(X2) + SSR(X1|X2).
As we knor that:
SSR(X2|X1) = SSR(X1, X2) − SSR(X1) --------------- (1)
SSR(X1|X2) = SSR(X1, X2) − SSR(X2) --------------- (2)
Subtracting (2) from (1) we get,
SSR(X2|X1) - SSR(X1|X2) = − SSR(X1) + SSR(X2)
SSR(X2|X1) + SSR(X1) = SSR(X1|X2) + SSR(X2)
Hence above statement is True
->In simple linear regression, then (X’X)-1 is 2x2.
TRUE
-> In simple linear regression, the hat-matrix is 2x2
FALSE