In: Math
Evaluate the given equation by integration.
∫(√tan x + √cot x) dx
∫(√tan x + √cot x) dx = ∫(√(sin x/cos x) + √(cos x/sin x)dx
= √2 ∫(sin x + cos x)/√sin 2x dx
Put sin x – cos x = t
=> (cos x + sin x) dx = dt
Also (sin x – cos x)² = t²
1 – sin 2x = t²
=> sin 2x = 1-t²
I = √2 ∫ dt/ √(1-t²)
= √2 sin-¹ t + C
= √2 sin-¹(sin x – cos x) + C
Value of ∫(√tan x + √cot x) dx = √2 sin-¹(sin x – cos x) + C