Question

In: Math

integration of ((8(x+a))/(x^2+a^2))dx. using trig. sub.

integration of ((8(x+a))/(x^2+a^2))dx. using trig. sub.

Solutions

Expert Solution

Soln 8(6+a) 22 ta? dal: let a tano. Then, da za see? odo. SO) a²ta? 8 J 8(reta) dre 8 (a tang ta) asec? odo a² tan²ota? ar tan 0+1) seczo do a? (tan20+!) (tano +1) seczo do sec? o [: sec²o- tano = 8Stan +1) de =] 8 B[ln | sec ol + o] + C, where.c c'is the constant of integration. D- a tano ,.-> tan o= 2 a So, seco= + It tanzo =t It 21 92 17 Ja² +212 Jaceta2 Isecol and na Therefore, ätano a tano = 2 => 0= => 0 = thn 12 dre 8) inx²+62 +tant of inpatien) x?ta2 8 in ( 22 +22] sin la') + tanteria +ch 8 + tant en )+c -

= 8 in (22+62)²_8In(a) + tenlle a te' = 8x In (22 +22) - 8|1(a) + tarile not c' 4 11(x2+a2) + tant pour) + C , where e= c'-elrica) a


Related Solutions

Evaluate the integral: ∫−14 / x^2√x^2+100 dx (A) Which trig substitution is correct for this integral?...
Evaluate the integral: ∫−14 / x^2√x^2+100 dx (A) Which trig substitution is correct for this integral? x=−14sec(θ) x=100sec(θ) x=10tan(θ) x=100sin(θ) x=10sin(θ) x=100tan(θ) (B) Which integral do you obtain after substituting for x and simplifying? Note: to enter θ, type the word theta.    (C) What is the value of the above integral in terms of θ?    (D) What is the value of the original integral in terms of x?
Evaluate the integral: ∫√36x^2−49 / x^3 dx (A) Which trig substitution is correct for this integral?...
Evaluate the integral: ∫√36x^2−49 / x^3 dx (A) Which trig substitution is correct for this integral? x=49/36sec(θ) x=7/6sec(θ) x=1/36sec(θ) x=6/7sec(θ) x=7/6sin(θ) (B) Which integral do you obtain after substituting for xx? Note: to enter θθ, type the word theta.    (C) What is the value of the above integral in terms of θ? (D) What is the value of the original integral in terms of x? Note: WAMAP does not recognize the inverse secant (arcsec) function. You will need to...
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral...
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral of (6dx)/(16+16x^2)
Evaluate the given equation by integration. ∫(√tan x + √cot x) dx
Evaluate the given equation by integration.∫(√tan x + √cot x) dx
Solve the following integrals using integration by parts technique: a) [int] xsinx dx b) [int] x^2sinx...
Solve the following integrals using integration by parts technique: a) [int] xsinx dx b) [int] x^2sinx dx c) [int] xcosx dx d) [int] sin(sqrt(x)) dx e) [int] xexp(x) dx f) [int] x / exp(x) dx
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C...
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C for the constant of integration.) dx/sqrt(9x^2-16)^3 Evaluate the integral. (Use C for the constant of integration.) 3/(x(x+2)(3x-1))*dx
I = ∫sqrt(4x^2+20) dx I = ∫(1)/(x^2*sqrt(x^2-a)) dx
I = ∫sqrt(4x^2+20) dx I = ∫(1)/(x^2*sqrt(x^2-a)) dx
The integral ∫(2x3-1)/(x4 + x) dx is equal to (here C is the constant of integration)
The integral ∫(2x3-1)/(x4 + x) dx is equal to (here C is the constant of integration)
1. ʃ11-3x/(x^2+2x-3) dx 2. ʃ4x-16/(x^2-2x -3 )dx 3. ʃ(2x^2-9x-35)/(x+1)(x-2)(x+3) dx
1. ʃ11-3x/(x^2+2x-3) dx 2. ʃ4x-16/(x^2-2x -3 )dx 3. ʃ(2x^2-9x-35)/(x+1)(x-2)(x+3) dx
Solve the following integral  ∫ (x^2 + x + 2) / (x + 1)(x^2 + 1) dx....
Solve the following integral  ∫ (x^2 + x + 2) / (x + 1)(x^2 + 1) dx. Use partial fraction decomposition. Show all work and steps to get to solution.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT