In: Finance
Sparkle Jewelers expects to pay dividends (per share) of $0.75, $1.50, $2.60, $3.50 during the next four years. Beginning in the fifth year, the dividend is expected to grow at a rate of 5 percent indefinitely. If investors require a 15 percent return to purchase Sparkle’s stock, what is the current value of the company’s stock?
As per dividend discount model, current price of stock is the present value of future dividends. | |||||||||||
Step-1:Present value of future dividends of next 4 years | |||||||||||
Year | Dividend | Discount factor | Present value of dividend | ||||||||
a | b | c=1.15^-a | d=b*c | ||||||||
1 | $ 0.75 | 0.8696 | $ 0.65 | ||||||||
2 | $ 1.50 | 0.7561 | $ 1.13 | ||||||||
3 | $ 2.60 | 0.6575 | $ 1.71 | ||||||||
4 | $ 3.50 | 0.5718 | $ 2.00 | ||||||||
Total | $ 5.50 | ||||||||||
Step-2:Calculation of terminal value of dividend | |||||||||||
Terminal value of dividend | = | D4*(1+g)/(Ke-g) | Where, | ||||||||
= | 3.50*(1+0.05)/(0.15-0.05) | D4 | $ 3.50 | ||||||||
= | $ 36.75 | g | 5% | ||||||||
Ke | 15% | ||||||||||
Step-3:Calculation of present value of all future dividends | |||||||||||
Present value of next 4 years dividend | $ 5.50 | ||||||||||
Present value of terminal value | $ 36.75 | ||||||||||
Present value of all future dividends | $ 42.25 | ||||||||||
Thus, current value of company's stock is | $ 42.25 | ||||||||||
Working: | |||||||||||
Present value of terminal value | = | Terminal value * Present value of 1 | |||||||||
= | $ 36.75 | *(1.15^-4) | |||||||||
= | $ 21.01 | ||||||||||