Question

In: Statistics and Probability

Let T be a Kumaraswamy random variable, and X be a Weibull random variable, the T-X...

Let T be a Kumaraswamy random variable, and X be a Weibull random variable, the T-X family will be called the Kumaraswamy-Weibull distribution. Using W[F(x)]=F(x). Obtain

(a) both the cdf and pdf of the Kumaraswamy-Weibull distribution.

(b) both the hazard and reverse hazard function Kumaraswamy-Weibull distribution.

(c) the quantile function Kumaraswamy-Weibull distribution.

Solutions

Expert Solution


Related Solutions

A random variable X is said to follow the Weibull distribution with shape parameter
A random variable \(X\) is said to follow the Weibull distribution with shape parameter \(\alpha\) and scale parameter \(\beta\), written \(W(\alpha, \beta)\) if its p.d.f. is given by $$ f(x)=\frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-\left(\frac{g}{3}\right)^{\alpha}} $$ for \(x>0\). The Weibull distribution is used to model lifetime of item subject to failure. If \(\alpha \in(0,1),\) it is used to model decreasing failure rate overtime, whereas if \(\alpha>1,\) one models increasing failure rate over time. It is easy to show that the c.d.f. of \(X\)...
Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment...
Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment of X about the origin. b) Let Y be independent of X and also uniformly distributed in [0, T]. Calculate the second moment about the origin, and the variance of Z = X + Y
Let X be a random variable such that P(X = 1) = 0.4 and P(X =...
Let X be a random variable such that P(X = 1) = 0.4 and P(X = 0) = 0.6.  Compute Var(X).
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a...
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a binomial random variable with parameters (m, p). What is the pdf of the random variable Z=X+Y? (b) Let X and Y be indpenednet random variables. Let Z=X+Y. What is the moment generating function for Z in terms of those for X and Y? Confirm your answer to the previous problem (a) via moment generating functions.
Let X be a random variable that is equal to the number of times a 5...
Let X be a random variable that is equal to the number of times a 5 is rolled in three rolls of a fair 5-sided die with the integers 1 through 5 on the sides. What is E[X2 ]? What is E2 [X], that is, (E[X])2 ? Justify your answers briefly
1. Let X be a continuous random variable such that when x = 10, z =...
1. Let X be a continuous random variable such that when x = 10, z = 0.5. This z-score tells us that x = 10 is less than the mean of X. Select one: True False 2. If an economist wants to determine if there is evidence that the average household income in a community is different from $ 32,000, then a two-tailed hypothesis test should be used. Select one: True False 3. α (alpha) refers to the proportion of...
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to...
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to the power of Y. What is the distribution of Z?
1. Let X be random variable with density p(x) = x/2 for 0 < x<...
1. Let X be random variable with density p(x) = x/2 for 0 < x < 2 and 0 otherwise. Let Y = X^2−2. a) Compute the CDF and pdf of Y. b) Compute P(Y >0 | X ≤ 1.8).
Let X be a random variable with the following probability distribution: Value x of X P(X=x)  ...
Let X be a random variable with the following probability distribution: Value x of X P(X=x)   20   0.35 30   0.10 40   0.25 50   0.30 Find the expectation E (X) and variance Var (X) of X. (If necessary, consult a list of formulas.) E (x) = ? Var (X) = ?
Let X be a exponential random variable with pdf f(x) = λe−λx for x > 0,...
Let X be a exponential random variable with pdf f(x) = λe−λx for x > 0, and cumulative distribution function F(x). (a) Show that F(x) = 1−e −λx for x > 0, and show that this function satisfies the requirements of a cdf (state what these are, and show that they are met). [4 marks] (b) Draw f(x) and F(x) in separate graphs. Define, and identify F(x) in the graph of f(x), and vice versa. [Hint: write the mathematical relationships,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT