(a) The cdf of Y is
FY(y)=P(Y≤y)=P(Xα≤y)=P(X≤yα1)=1−exp(−βαy);y>0
The pdf of Y is fY(y)=dydFY(y)=βα1exp(−βαy);y>0
=0 otherwise
Hence Y∼ Exponential distribution with E(Y)=βa
(b) Now transform Y→Z where z=βα2y; dydz=βα2;∣ Jacobian ∣=2βα
Then the pdf of Z is fZ(z)=21e−2z;z>0
=0 otherwise Hence Z=βα2Y∼χ22
Since Yi′ s are independent so from additive property of χ2, Q=βα2∑i=1nYi=βα2nYˉn∼χ2n2 which is independent of α and β
Hence Q is pivot. (Note: I think the expression of Q=βα2∑i=1nYi=βα2nYˉn)
(c) 2α12∑i=1n1Xi=2α12n1Xˉn1∼χ2n12;2α22∑i=1n2Yi=2α22n2Yˉn2∼χ2n22
and X and Y′ s are independent so 2α22n1Yˉn2/(2n2)2α12n1Xˉn1/(2n1)=2α22n2∑i=1n2Yiα22α22n1∑i=1n1Xiα1∼F2n1,2n2 and it is al so free from (α1,α2), so it is pivot.
(d) P(F1−α/2,2n1,2n2≤2α22n2∑i=1n2Yiα22α22n1∑i=1n1Xiα1≤Fα/2,2n1,2n2)=1−α So 100(1−α)% C.I. for 2α12α2 is (F1−α/2,2n1,2n2×XˉnYˉn,Fα/2,2n1,2n2×XˉnYˉn)
(e) 100(1−α)% C.I. for α2−α is (log21×log(F1−α/2,2n1,2n2×XˉnYˉn),log21×log(Fα/2,2n1,2n2×XˉnYˉn))