Question

In: Statistics and Probability

Let X be a random variable with the following probability distribution: Value x of X P(X=x)  ...

Let X be a random variable with the following probability distribution:

Value x of X P(X=x)  
20   0.35
30   0.10
40   0.25
50   0.30

Find the expectation E (X) and variance Var (X) of X. (If necessary, consult a list of formulas.)

E (x) = ?
Var (X) = ?

Solutions

Expert Solution


Related Solutions

A probability distribution function P(x) for a random variable X is defined by P(x) = P...
A probability distribution function P(x) for a random variable X is defined by P(x) = P r{X ≤ x}. Suppose that we draw a list of n random variables X1, X2, X3 · · · Xn from a continuous probability distribution function P that is computable in O(1) time. Give an algorithm that sorts these numbers in linear average case time.
Let Xi be a random variable that takes on the value 1 with probability p and...
Let Xi be a random variable that takes on the value 1 with probability p and the value 0 with probability q = 1 − p. As we have learnt, this type of random variable is referred to as a Bernoulli trial. This is a special case of a Binomial random variable with n = 1. a. Show the expected value that E(Xi)=p, and Var(Xi)=pq b. One of the most common laboratory tests performed on any routine medical examination is...
Let X be a continuous random variable following normal distribution with mean value of: (a is...
Let X be a continuous random variable following normal distribution with mean value of: (a is 1) and standard deviation of b is 1/10 ,  What is the mode of X? (1 mark)  What is median of X? (1 mark)  What is ?(? > ?)? (1mark)  What is ?(? − ? < ? < ? + ?)? (1 mark)  What is ?(? − 1.96? < ? < ? + 1.96?))? (1mark)
Let X be a continuous random variable following normal distribution with mean value of: (a is...
Let X be a continuous random variable following normal distribution with mean value of: (a is the last digit of your student number) and standard deviation of b (b is the last digit of your student number divided by 10), a=9 b=9/10 What is the mode of X? What is median of X? What is P(X>a)? What is P(a-b<X<a+b)? What is P(a-1.96b<X<a+1.96b)?
Question 1: Given the following probability distribution for a random variable X: x P(X=x) -2 0.30...
Question 1: Given the following probability distribution for a random variable X: x P(X=x) -2 0.30 -1 0.15 0 0.20 1 0.20 2 0.15 a) Explain two reasons why the above distribution is a valid probability distribution. b) Calculate μX and σX. c) Determine the cdf(X), and write it as an additional column in the table. d) Calculate P(−1<X≤3) . e) Draw a histogram that represents the probability distribution of X.
Let X be a continuous random variable having a normal probability distribution with mean µ =...
Let X be a continuous random variable having a normal probability distribution with mean µ = 210 and standard deviation σ = 15. (a) Draw a sketch of the density function of X. (b) Find a value x∗ which cuts left tail of area 0.25 . (c) Find a value y∗ which cuts right tail of area 0.30. (d) Find a and b such that p(a ≤ X ≤ b) = 0.78.
Let X be a random variable such that P(X = 1) = 0.4 and P(X =...
Let X be a random variable such that P(X = 1) = 0.4 and P(X = 0) = 0.6.  Compute Var(X).
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using...
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using the binomial formula or tables, calculate the following probabilities. Also calculate the mean and standard deviation of the distribution. Round solutions to four decimal places, if necessary. P(x≥3)= P(x≤8)= P(x=5)= μ= σ=
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT