Question

In: Chemistry

Consider the evaporation of methanol at 25.0°C CH3OH(l) --> CH3OH(g) Find ΔG°rxn at 25.0°C if the...

Consider the evaporation of methanol at 25.0°C

CH3OH(l) --> CH3OH(g)

Find ΔG°rxn at 25.0°C if the nonstandard pressure of CH3OH = 150.0 mmHg

Solutions

Expert Solution

The given reaction is

CH3OH (l) <======> CH3OH (g)

The equilibrium constant is given as

Kp = PCH3OH where the P term denotes the partial pressure of CH3OH vapor.

Since only CH3OH vapor is present, we shall assume PCH3OH = Ptot = P = 150 mm Hg.

Convert P to atm as below P = 150 mm Hg = (150 mm Hg)*(1 atm/760 mm Hg) = 0.1974 atm (1 atm = 760 mm Hg).

Therefore, Kp = P when P is expressed in atm; Note that Kp must be dimensionless. Therefore, Kp = 0.1974.

Now use the equation ΔG0rxn = -R*T*ln P where T = 25⁰C = 298 K; therefore,

ΔG0 = -(8.314 J/mol.K)*(298 K)*ln (0.1974) = -(2477.572 J/mol)*(-1.6225) = 4019.8606 J/mol = (4019.8606 J/mol)*(1 kJ/1000 J) = 4.0198 kJ/mol ≈ 4.02 kJ/mol (ans).


Related Solutions

Consider the evaporation of methanol at 25.0 ?C : CH3OH(l)?CH3OH(g) . Why methanol spontaneously evaporates in...
Consider the evaporation of methanol at 25.0 ?C : CH3OH(l)?CH3OH(g) . Why methanol spontaneously evaporates in open air at 25.0 ?C : Methanol evaporates at room temperature because there is an equilibrium between the liquid and the gas phases. The vapor pressure is moderate (143 mmHg at 25.0 degrees centigrade), so a moderate amount of methanol can remain in the gas phase, which is consistent with the free energy values. A.) Find ?G? at 25.0 ?C . B.) Find ?G...
Consider the sublimation of iodine at 25.0 °C. I2(s) → I2(g) a. Find ΔG°rxn at 25.0...
Consider the sublimation of iodine at 25.0 °C. I2(s) → I2(g) a. Find ΔG°rxn at 25.0 °C. b. Find ΔGrxn at 25.0 °C under the following nonstandard conditions: i. PI2 = 1.00 mmHg ii. PI2 = 0.100 mmHg c. Explain why iodine spontaneously sublimes in open air at 25 °C. 2) Balance the following redox reaction in basic aqueous solution. Cl2(g) → Cl– (aq) + ClO– (aq)
Consider the following reaction: CH3OH(g)⇌CO(g)+2H2(g) Part A Calculate ΔG for this reaction at 25 ∘C under...
Consider the following reaction: CH3OH(g)⇌CO(g)+2H2(g) Part A Calculate ΔG for this reaction at 25 ∘C under the following conditions: PCH3OH= 0.885 atm PCO= 0.145 atm PH2= 0.175 atm ΔG = nothing   kJ  
2CH4(g)→C2H6(g)+H2(g) Calculate ΔG∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) calculate ΔH∘rxn and...
2CH4(g)→C2H6(g)+H2(g) Calculate ΔG∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) calculate ΔH∘rxn and Calculate ΔG∘rxn at 25 ∘C. 2KClO3(s)→2KCl(s)+3O2(g) calculate ΔH∘rxn .and Calculate ΔG∘rxn at 25 ∘C.
Calculate the ΔG°rxn using the following information. 4 HNO3(g) + 5 N2H4(l) → 7 N2(g) +...
Calculate the ΔG°rxn using the following information. 4 HNO3(g) + 5 N2H4(l) → 7 N2(g) + 12 H2O(l) ΔG°rxn = ? ΔH°f (kJ/mol) -133.9 50.6 -285.8 S°(J/mol • K) 266.9 121.2 191.6 70.0
Consider the following reaction at 25.0 °C and 760.0 torr: SO3 (l) → SO2 (g) +...
Consider the following reaction at 25.0 °C and 760.0 torr: SO3 (l) → SO2 (g) + ½ O2 (g) The following data were obtained. Compound H°f(kJ/mole) SO3 (l) -395.7 SO2(g) -296.8 O2(g) 0.00 Calculate ∆H° for the reaction. The reaction is ________. Calculate the volume of the products if 2.25 g of SO3 (l) is decomposed at 25.0 °C and 760.0 torr. Calculate the partial pressure of oxygen gas in this reaction. Calculate ∆H° for the reaction: 3SO2 (g) +...
Calculate ΔG∘rxn for the following reaction: 4CO(g)+2NO2(g)→4CO2(g)+N2(g). Use the following reactions and given ΔG∘rxn values: 2NO(g)+O2(g)→2NO2(g),...
Calculate ΔG∘rxn for the following reaction: 4CO(g)+2NO2(g)→4CO2(g)+N2(g). Use the following reactions and given ΔG∘rxn values: 2NO(g)+O2(g)→2NO2(g), ΔG∘rxn= - 72.6 kJ 2CO(g)+O2(g)→2CO2(g), ΔG∘rxn= - 514.4 kJ 12O2(g)+12N2(g)→NO(g), ΔG∘rxn= 87.6 kJ
1. Calculate the ΔG°rxn (in kJ) using the following information.                   4 HNO3(g) + 5 N2H4(l) →...
1. Calculate the ΔG°rxn (in kJ) using the following information.                   4 HNO3(g) + 5 N2H4(l) → 7 N2(g) + 12 H2O(l)   ΔG°rxn = ? ΔH°f (kJ/mol) -115.6 46.4 -268.0 S°(J/mol∙K) 216.9 102.1 289.0 66 2. Consider the following reaction at constant P. Use the information here to determine the value of ΔSsurr at 67º C. (Answer in J/K. If answer is negative, input - sign).   2 NO(g) + O2(g) → 2 NO2(g) ΔH = -156 kJ 3. Which statement is...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C?2CH4(g)→C2H6(g)+H2(g), Calculate ΔS∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) Calculate ΔS∘rxn at 25 ∘C. 2KClO3(s)→2KCl(s)+3O2(g) Calculate ΔS∘rxn at 25 ∘C.
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C? a) 2CH4(g)→C2H6(g)+H2(g) b) 2NH3(g)→N2H4(g)+H2(g) c) N2(g)+O2(g)→2NO(g) d) 2KClO3(s)→2KCl(s)+3O2(g) Can you please show equations. I am having so much trouble with these.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT