Question

In: Chemistry

Consider the sublimation of iodine at 25.0 °C. I2(s) → I2(g) a. Find ΔG°rxn at 25.0...

Consider the sublimation of iodine at 25.0 °C. I2(s) → I2(g)
a. Find ΔG°rxn at 25.0 °C.
b. Find ΔGrxn at 25.0 °C under the following nonstandard conditions:
i. PI2 = 1.00 mmHg ii. PI2 = 0.100 mmHg c.
Explain why iodine spontaneously sublimes in open air at 25 °C.

2) Balance the following redox reaction in basic aqueous solution. Cl2(g) → Cl– (aq) + ClO– (aq)

Solutions

Expert Solution


Related Solutions

Consider the evaporation of methanol at 25.0°C CH3OH(l) --> CH3OH(g) Find ΔG°rxn at 25.0°C if the...
Consider the evaporation of methanol at 25.0°C CH3OH(l) --> CH3OH(g) Find ΔG°rxn at 25.0°C if the nonstandard pressure of CH3OH = 150.0 mmHg
1)For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. 3H2(g)+Fe2O3(s)→2Fe(s)+3H2O(g) N2(g)+3H2(g)→2NH3(g)...
1)For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. 3H2(g)+Fe2O3(s)→2Fe(s)+3H2O(g) N2(g)+3H2(g)→2NH3(g) 2)Before investigating the scene, the technician must dilute the luminol solution to a concentration of 6.00×10−2M . The diluted solution is then placed in a spray bottle for application on the desired surfaces. How many moles of luminol are present in 2.00 L of the diluted spray? 3)A student placed 11.0 g of glucose (C6H12O6) in a volumetric flask, added enough water to dissolve...
The dissociation of molecular iodine into iodine atoms is represented as I2(g) ⇌ 2I(g)
The dissociation of molecular iodine into iodine atoms is represented as I2(g) ⇌ 2I(g) At 1000 K, the equilibrium constant Kc for the reaction is 3.80 × 10−5. Suppose you start with 0.0461 mol of I2 in a 2.27−L flask at 1000 K. What are the concentrations of the gases at equilibrium?What is the equilibrium concentration of I2?MWhat is the equilibrium concentration of I?M
2CH4(g)→C2H6(g)+H2(g) Calculate ΔG∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) calculate ΔH∘rxn and...
2CH4(g)→C2H6(g)+H2(g) Calculate ΔG∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) calculate ΔH∘rxn and Calculate ΔG∘rxn at 25 ∘C. 2KClO3(s)→2KCl(s)+3O2(g) calculate ΔH∘rxn .and Calculate ΔG∘rxn at 25 ∘C.
Calculate ΔG∘rxn for the following reaction: 4CO(g)+2NO2(g)→4CO2(g)+N2(g). Use the following reactions and given ΔG∘rxn values: 2NO(g)+O2(g)→2NO2(g),...
Calculate ΔG∘rxn for the following reaction: 4CO(g)+2NO2(g)→4CO2(g)+N2(g). Use the following reactions and given ΔG∘rxn values: 2NO(g)+O2(g)→2NO2(g), ΔG∘rxn= - 72.6 kJ 2CO(g)+O2(g)→2CO2(g), ΔG∘rxn= - 514.4 kJ 12O2(g)+12N2(g)→NO(g), ΔG∘rxn= 87.6 kJ
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C?2CH4(g)→C2H6(g)+H2(g), Calculate ΔS∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) Calculate ΔS∘rxn at 25 ∘C. 2KClO3(s)→2KCl(s)+3O2(g) Calculate ΔS∘rxn at 25 ∘C.
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C? a) 2CH4(g)→C2H6(g)+H2(g) b) 2NH3(g)→N2H4(g)+H2(g) c) N2(g)+O2(g)→2NO(g) d) 2KClO3(s)→2KCl(s)+3O2(g) Can you please show equations. I am having so much trouble with these.
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g)CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g)CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ΔH∘ and ΔS∘ΔS∘ do not change too much within the given temperature range.) Part B 1100 KK Express your answer using one decimal place. Part C 1420 KK Express your answer using one decimal place. Part D Predict whether or not the reaction in each part will be spontaneous. Drag the appropriate items to their respective bins. Reaction conducted at 1100 KK...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.547 M. [H2]= [I2]= [HI]=
Sulfide in a water sample is coulometrically titrated with iodine (H2S + I2 ----> S +...
Sulfide in a water sample is coulometrically titrated with iodine (H2S + I2 ----> S + 2H+ + 2I-). If a 10.00 mL aliquot of the water sample requires a current of 0.75 A for 5.4 minutes to reach the end point, what is the molarity of the sulfide in the water sample? (A) 0.5036 (B) 0.1259 (C) 0.0051   (D) 0.0013
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT