In: Statistics and Probability
Consider the following sets of sample data:
A: $31,100$31,100, $25,800$25,800, $36,300$36,300, $30,200$30,200, $30,000$30,000, $19,800$19,800, $22,300$22,300, $22,600$22,600, $34,900$34,900, $21,700$21,700, $36,900$36,900, $30,800$30,800, $31,700$31,700, $37,100$37,100
B: 3.183.18, 4.244.24, 4.274.27, 4.384.38, 3.873.87, 4.754.75, 3.433.43, 3.353.35, 4.164.16, 4.814.81, 2.982.98
For each of the above sets of sample data, calculate the coefficient of variation, CV. Round to one decimal place.
For Set A
Mean value is
Create the following table.
data | data-mean | (data - mean)2 |
31100 | 1728.5714 | 2987959.084898 |
25800 | -3571.4286 | 12755102.244898 |
36300 | 6928.5714 | 48005101.644898 |
30200 | 828.5714 | 686530.56489796 |
30000 | 628.5714 | 395102.00489796 |
19800 | -9571.4286 | 91612245.444898 |
22300 | -7071.4286 | 50005102.444898 |
22600 | -6771.4286 | 45852245.284898 |
34900 | 5528.5714 | 30565101.724898 |
21700 | -7671.4286 | 58850816.764898 |
36900 | 7528.5714 | 56679387.324898 |
30800 | 1428.5714 | 2040816.244898 |
31700 | 2328.5714 | 5422244.764898 |
37100 | 7728.5714 | 59730815.884898 |
Find the sum of numbers in the last column to get.
So standard deviation is
So coefficient of variation is
Now for set B
Sample mean is
Create the following table.
data | data-mean | (data - mean)2 |
3.18 | -0.7673 | 0.58874929 |
4.24 | 0.2927 | 0.08567329 |
4.27 | 0.3227 | 0.10413529 |
4.38 | 0.4327 | 0.18722929 |
3.87 | -0.0773 | 0.00597529 |
4.75 | 0.8027 | 0.64432729 |
3.43 | -0.5173 | 0.26759929 |
3.35 | -0.5973 | 0.35676729 |
4.16 | 0.2127 | 0.04524129 |
4.81 | 0.8627 | 0.74425129 |
2.98 | -0.9673 | 0.93566929 |
Find the sum of numbers in the last column to get.
So standard deviation is
So CV is