In: Statistics and Probability
Consider the following sets of sample data: A: 20,407, 20,145, 20,363, 20,124, 21,177, 21,465, 22,194, 20,834, 21,717, 21,613, 21,619, 21,223, 20,532, 21,195 B: 4.26, 4.00, 4.01, 4.14, 3.60, 4.58, 2.94, 3.81, 3.78, 2.98, 3.50 Step 1 of 2 : For each of the above sets of sample data, calculate the coefficient of variation, CV. Round to one decimal place.
A.
Mean of A , = (20407 + 20145 + 20363 + 20124 + 21177 + 21465 + 22194 + 20834 + 21717 + 21613 + 21619 + 21223 + 20532 + 21195) / 14
= 21043.43
Variance of A = [(20407 - 21043.43)2 + (20145 - 21043.43)2 + (20363 - 21043.43)2 + (20124 - 21043.43)2 + (21177 - 21043.43)2 + (21465 - 21043.43)2 + (22194 - 21043.43)2 + (20834 - 21043.43)2 + (21717 - 21043.43)2 + (21613 - 21043.43)2 + (21619 - 21043.43)2 + (21223 - 21043.43)2 + (20532 - 21043.43)2 + (21195 - 21043.43)2 ] / 13
= 423842.9
Standard deviation of A, = = 651.0322
CV = / = 651.0322 / 21043.43 = 0.031 = 3.1%
B.
Mean of B , = (4.26 + 4.00 + 4.01 + 4.14 + 3.60 + 4.58 + 2.94 + 3.81 + 3.78 + 2.98 + 3.50) / 11
= 3.78
Variance of B = [(4.26 - 3.78)2 + (4.00 - 3.78)2 + (4.01 - 3.78)2 + (4.14 - 3.78)2 + (3.60 - 3.78)2 + (4.58 - 3.78)2 + (2.94 - 3.78)2 + (3.81 - 3.78)2 + (3.78 - 3.78)2 + (2.98 - 3.78)2 + (3.50 - 3.78)2 ] / 11
= 0.2558564
Standard deviation of B, = = 0.5058
CV = / = 0.5058 / 3.78 = 0.1338 = 13.4%