In: Statistics and Probability
The thickness of a metal part is an important quality parameter. Data on thickness (in inches) are given in the following table, for 25 samples of five parts each.
| Sample Number | x1 | x2 | x3 | x4 | x5 |
| 1 | 0.0629 | 0.0636 | 0.0640 | 0.0634 | 0.0641 |
| 2 | 0.0630 | 0.0632 | 0.0620 | 0.0624 | 0.0627 |
| 3 | 0.0628 | 0.0631 | 0.0633 | 0.0633 | 0.0630 |
| 4 | 0.0634 | 0.0630 | 0.0631 | 0.0632 | 0.0633 |
| 5 | 0.0619 | 0.0628 | 0.0630 | 0.0619 | 0.0625 |
| 6 | 0.0613 | 0.0629 | 0.0634 | 0.0625 | 0.0628 |
| 7 | 0.0630 | 0.0639 | 0.0625 | 0.0629 | 0.0627 |
| 8 | 0.0628 | 0.0627 | 0.0622 | 0.0625 | 0.0627 |
| 9 | 0.0623 | 0.0626 | 0.0633 | 0.0630 | 0.0624 |
| 10 | 0.0631 | 0.0631 | 0.0633 | 0.0631 | 0.0630 |
| 11 | 0.0635 | 0.0630 | 0.0638 | 0.0635 | 0.0633 |
| 12 | 0.0623 | 0.0630 | 0.0630 | 0.0627 | 0.0629 |
| 13 | 0.0635 | 0.0631 | 0.0630 | 0.0630 | 0.0630 |
| 14 | 0.0645 | 0.0640 | 0.0631 | 0.0640 | 0.0642 |
| 15 | 0.0619 | 0.0644 | 0.0632 | 0.0622 | 0.0635 |
| 16 | 0.0631 | 0.0627 | 0.0630 | 0.0628 | 0.0629 |
| 17 | 0.0616 | 0.0623 | 0.0631 | 0.0620 | 0.0625 |
| 18 | 0.0630 | 0.0630 | 0.0626 | 0.0629 | 0.0628 |
| 19 | 0.0636 | 0.0631 | 0.0629 | 0.0635 | 0.0634 |
| 20 | 0.0640 | 0.0635 | 0.0629 | 0.0635 | 0.0634 |
| 21 | 0.0628 | 0.0625 | 0.0616 | 0.0620 | 0.0623 |
| 22 | 0.0615 | 0.0625 | 0.0619 | 0.0619 | 0.0622 |
| 23 | 0.0630 | 0.0632 | 0.0630 | 0.0631 | 0.0630 |
| 24 | 0.0635 | 0.0629 | 0.0635 | 0.0631 | 0.0633 |
| 25 | 0.0623 | 0.0629 | 0.0630 | 0.0626 | 0.0628 |
(a) Using all the data find trial control limits for X¯ and R charts. Round your answers to 5 decimal places (e.g. 98.76543).
X¯ Control Limits:
UCL =
CL =
LCL =
R Control Limits:
UCL =
CL =
LCL =
(b) Construct X¯ and R control charts using the control limits from part (a) to identify out-of-control points. (Use Minitab, Excel or any other statistical software.)
Does the process appear to be in control or out-of-control?
How many of the subgroups fall outside the control limits on both charts combined. (If none are outside the limits, type "0".)
a) -
To calculate limits for
& R charts, we have to calculate mean & range of each
sample -
( In excel, you can use AVERAGE function to calculate mean)
R = Maximium observation - Minimum observation (In excel, you can use - MAX() - MIN() )
Observation table -
| Sample | x1 | x2 | x3 | x4 | x5 | x_bar | Range |
| 1 | 0.0629 | 0.0636 | 0.064 | 0.0634 | 0.0641 | 0.0636 | 0.0012 |
| 2 | 0.063 | 0.0632 | 0.062 | 0.0624 | 0.0627 | 0.06266 | 0.0012 |
| 3 | 0.0628 | 0.0631 | 0.0633 | 0.0633 | 0.063 | 0.0631 | 0.0005 |
| 4 | 0.0634 | 0.063 | 0.0631 | 0.0632 | 0.0633 | 0.0632 | 0.0004 |
| 5 | 0.0619 | 0.0628 | 0.063 | 0.0619 | 0.0625 | 0.06242 | 0.0011 |
| 6 | 0.0613 | 0.0629 | 0.0634 | 0.0625 | 0.0628 | 0.06258 | 0.0021 |
| 7 | 0.063 | 0.0639 | 0.0625 | 0.0629 | 0.0627 | 0.063 | 0.0014 |
| 8 | 0.0628 | 0.0627 | 0.0622 | 0.0625 | 0.0627 | 0.06258 | 0.0006 |
| 9 | 0.0623 | 0.0626 | 0.0633 | 0.063 | 0.0624 | 0.06272 | 0.001 |
| 10 | 0.0631 | 0.0631 | 0.0633 | 0.0631 | 0.063 | 0.06312 | 0.0003 |
| 11 | 0.0635 | 0.063 | 0.0638 | 0.0635 | 0.0633 | 0.06342 | 0.0008 |
| 12 | 0.0623 | 0.063 | 0.063 | 0.0627 | 0.0629 | 0.06278 | 0.0007 |
| 13 | 0.0635 | 0.0631 | 0.063 | 0.063 | 0.063 | 0.06312 | 0.0005 |
| 14 | 0.0645 | 0.064 | 0.0631 | 0.064 | 0.0642 | 0.06396 | 0.0014 |
| 15 | 0.0619 | 0.0644 | 0.0632 | 0.0622 | 0.0635 | 0.06304 | 0.0025 |
| 16 | 0.0631 | 0.0627 | 0.063 | 0.0628 | 0.0629 | 0.0629 | 0.0004 |
| 17 | 0.0616 | 0.0623 | 0.0631 | 0.062 | 0.0625 | 0.0623 | 0.0015 |
| 18 | 0.063 | 0.063 | 0.0626 | 0.0629 | 0.0628 | 0.06286 | 0.0004 |
| 19 | 0.0636 | 0.0631 | 0.0629 | 0.0635 | 0.0634 | 0.0633 | 0.0007 |
| 20 | 0.064 | 0.0635 | 0.0629 | 0.0635 | 0.0634 | 0.06346 | 0.0011 |
| 21 | 0.0628 | 0.0625 | 0.0616 | 0.062 | 0.0623 | 0.06224 | 0.0012 |
| 22 | 0.0615 | 0.0625 | 0.0619 | 0.0619 | 0.0622 | 0.062 | 0.001 |
| 23 | 0.063 | 0.0632 | 0.063 | 0.0631 | 0.063 | 0.06306 | 0.0002 |
| 24 | 0.0635 | 0.0629 | 0.0635 | 0.0631 | 0.0633 | 0.06326 | 0.0006 |
| 25 | 0.0623 | 0.0629 | 0.063 | 0.0626 | 0.0628 | 0.06272 | 0.0007 |
=0.06294 |
=0.00094 |
So, we get - To find
&
, we can take average of all
& R values.
=0.06294
&
=0.00094
Control limits for
chart are -
LCL =
- A3
= 0.06294 - (1.427*0.00094) = 0.06294 - 0.00134 = 0.0616
CL =
= 0.06294
UCL =
+ A3
= 0.06294 + (1.427*0.00094) = 0.06294 + 0.00134 = 0.06428
Control limits for R-chart are -
LCL = D3
= 0*0.00094 = 0
CL =
= 0.00094
UCL = D4
= 2.114*0.00094 = 0.00199
Values of A3, D3 & D4 are taken from table given below. Values taken corresponding to 5 for all constants, since our sample size is 5 for each sample.
b) -
Control chart -

In
control chart, none of the value is outside the control limits.
So, we can say that process is under control.
R control chart-

In this chart, we can see that two points are above the upper control limits. Sample no. 6 & sample no. 15 fall outside the control limits. So, the process is out of control.