In: Math
Table 6
Sample No. X1 X2 X3
1 0.0629 0.0636 0.0640
2 0.0630 0.0631 0.0622
3 0.0628 0.0631 0.0633
4 0.0634 0.0630 0.0631
5 0.0619 0.0628 0.0630
6 0.0613 0.0629 0.0634
7 0.0630 0.0639 0.0625
8 0.0628 0.0627 0.0623
9 0.0623 0.0627 0.0633
10 0.0631 0.0631 0.0633
11 0.0635 0.0630 0.0638
12 0.0623 0.0630 0.0630
13 0.0635 0.0631 0.0630
14 0.0645 0.0640 0.0631
15 0.0619 0.0644 0.0632
16 0.0631 0.0627 0.0630
17 0.0616 0.0623 0.0631
18 0.0630 0.0630 0.0626
19 0.0636 0.0631 0.0629
20 0.0640 0.0635 0.0629
21 0.0628 0.0625 0.0616
22 0.0615 0.0625 0.0619
23 0.0630 0.0632 0.0630
24 0.0635 0.0629 0.0635
25 0.0623 0.0629 0.0630
(a) Set up x-bar and R control charts. Is the process in statistical control?
The X-bar and R-chart are obtained in the following steps,
Step 1: Calculate the sample average, and range, for each sample.
Sample No. | X1 | X2 | X3 | ||
1 | 0.0629 | 0.0636 | 0.04 | 0.0555 | 0.0236 |
2 | 0.063 | 0.0631 | 0.02 | 0.0487 | 0.0431 |
3 | 0.0628 | 0.0631 | 0.063 | 0.0630 | 0.0003 |
4 | 0.0634 | 0.063 | 0.061 | 0.0625 | 0.0024 |
5 | 0.0619 | 0.0628 | 0.06 | 0.0616 | 0.0028 |
6 | 0.0613 | 0.0629 | 0.0613 | 0.0618 | 0.0016 |
7 | 0.063 | 0.0639 | 0.062 | 0.0630 | 0.0019 |
8 | 0.0628 | 0.0627 | 0.062 | 0.0625 | 0.0008 |
9 | 0.0623 | 0.0627 | 0.03 | 0.0517 | 0.0327 |
10 | 0.0631 | 0.0631 | 0.063 | 0.0631 | 0.0001 |
11 | 0.0635 | 0.063 | 0.0633 | 0.0633 | 0.0005 |
12 | 0.0623 | 0.063 | 0.063 | 0.0628 | 0.0007 |
13 | 0.0635 | 0.0631 | 0.0633 | 0.0633 | 0.0004 |
14 | 0.0645 | 0.064 | 0.063 | 0.0638 | 0.0015 |
15 | 0.0619 | 0.0644 | 0.063 | 0.0631 | 0.0025 |
16 | 0.0631 | 0.0627 | 0.0633 | 0.0630 | 0.0006 |
17 | 0.0616 | 0.0623 | 0.0613 | 0.0617 | 0.0010 |
18 | 0.063 | 0.063 | 0.0632 | 0.0631 | 0.0002 |
19 | 0.0636 | 0.0631 | 0.0632 | 0.0633 | 0.0005 |
20 | 0.064 | 0.0635 | 0.0642 | 0.0639 | 0.0007 |
21 | 0.0628 | 0.0625 | 0.0621 | 0.0625 | 0.0007 |
22 | 0.0615 | 0.0625 | 0.0611 | 0.0617 | 0.0014 |
23 | 0.063 | 0.0632 | 0.0633 | 0.0632 | 0.0003 |
24 | 0.0635 | 0.0629 | 0.0633 | 0.0632 | 0.0006 |
25 | 0.0623 | 0.0629 | 0.063 | 0.0627 | 0.0007 |
Sum | 1.5378 | 0.1216 |
Step 2: Calculate the grand average, and range,
Step 3: The control limits for and, charts are obtained as follow,
Chart
Where the value of is obtained from the control chart factor table,
For sample size = 3 ,
The X bar chart is obtained in excel. The screenshot is shown below,
Chart
Where, the value of and are obtained from the control chart factor table,
For sample size = 3 ,
We can see that, there are few data points outside the control limit hence the process is not in control.
(b)
The process standard deviation for the x-bar values is obtained in excel using the function =STDEV().
c)
We expect all the data would lie with three standard deviations from the mean data values.
The control limits are defined as,
Where,
d)
The process capability measure by process capability ratio,
Where,