Question

In: Chemistry

Steam at 275ºC and 15.0 bar is contained in a rigid tank with the volume of...

Steam at 275ºC and 15.0 bar is contained in a rigid tank with the volume of 10.0 m^3 . In a constant volume cooling process, the pressure inside the tank drops to 1.8 bar and some of the steam condenses. Calculate 1) the temperature of the tank contents after the process, 2) the amount of steam condensed during the process (in kg), and 3) the amount of heat removed from the tank during the process.

Solutions

Expert Solution

Given initial temperature, T1 = 275 oC = 275 +273 = 548 K

initial pressure P1 = 15 bar

initial volume V1 = 10 m3

final temperature, T2 = ?

final pressure P2 = 1.8 bar

final volume V2 = 10 m3

Applying combined gas equation P1V1/T1 = P2V2/T2

or T2 = P2V2 T1/ (P1V1) = 1.8 X 10 X 548 /. (15 X 10) = 65.78 K

Let initial number of moles of gaseous moles is n1

then P1V1 = n1RT1

or n1 = P1V1/RT1 = 15 X 10 / (8.314 × 10−5 X 548) = 3293.3 moles

(value of R = 8.314 × 10−5 m3 bar K−1 mol−1 )

Let initial number of moles of gaseous moles is n2

then P2V2 = n2RT2

or n2= P2V2/RT2 = 1.8 X 10 / (8.314 × 10−5 X 65.78) = 3291.3 moles

Then number of moles of steam condensed = n1-n2 = 3293.3 moles - 3291.3 moles = 2 moles

Molar mass of steam = 18 g/mol

Hence mass of steam condenced = 18 g/mol X 2 mol = 36 g = 0.036 kg


Related Solutions

Steam at 275ºC and 15.0 bar is contained in a rigid tank with the volume of...
Steam at 275ºC and 15.0 bar is contained in a rigid tank with the volume of 10.0 m3 . In a constantvolume cooling process, the pressure inside the tank drops to 1.8 bar and some of the steam condenses. Calculate 1) the temperature of the tank contents after the process, 2) the amount of steam condensed during the process (in kg), and 3) the amount of heat removed from the tank during the process.
10 kg of steam is contained at 10 bar in a rigid vessel of volume 2.275...
10 kg of steam is contained at 10 bar in a rigid vessel of volume 2.275 m3. The vessel is cooled until the pressure in the vessel is 7 bar. Calculate the amount of heat removed from the steam.
Consider 0.8 kg of N2 at 300 K, 1 bar contained in a rigid tank connected...
Consider 0.8 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K. Determine: (a) the volume of each tank, in m3. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process,...
0.1 kg of air (ideal gas) is contained in a closed, rigid tank of volume 0.04...
0.1 kg of air (ideal gas) is contained in a closed, rigid tank of volume 0.04 m^3 at 500 K. A paddle wheel stirs the air and transfers energy to the air at a constant rate of 1 kW for 100s. The temperature of the air increases to 600 K. (a) What is the final pressure of the air (kPa) (b)Calculate the heat transfer (kJ) for the process (use a constant, average specific heat)
0.1 kg of air (ideal gas) is contained in a closed, rigid tank of volume 0.04...
0.1 kg of air (ideal gas) is contained in a closed, rigid tank of volume 0.04 m^3 at 500 K. A paddle wheel stirs the air and transfers energy to the air at a constant rate of 1 kW for 100s. The temperature of the air increases to 600 K. (a) What is the final pressure of the air (kPa) (b)Calculate the heat transfer (kJ) for the process (use a constant, average specific heat)
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat...
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat transfer to the contents of the tank occurs until the temperature has increased to 400 K. During the process, a pressure-relief valve allows nitrogen to escape, maintaining constant pressure in the tank. Neglecting kinetic and potential energy effects, and using the ideal gas model with constant specific heats evaluated at 350 K, determine (a) the mass of nitrogen that escapes, in kg, and (b)...
A rigid cylinder of volume 0.025 m^3 contains steam at 80 bar and 350o C. The...
A rigid cylinder of volume 0.025 m^3 contains steam at 80 bar and 350o C. The cylinder is cooled until the pressure is 50 bar. Calculate the state of the steam after cooling and the amount of heat rejected by the steam. Sketch the process on the T-s diagram indicating the area which represents the heat flow. Also sketch the schematic of the system.
A rigid tank of volume 0.63 m3 initially has some air inside at 0.5 bar and...
A rigid tank of volume 0.63 m3 initially has some air inside at 0.5 bar and 300 K. A hole develops in the wall, and air from the surroundings at 1 bar, 300 K flows in until the pressure in the tank reaches 1 bar. Heat transfer between the contents of the tank and the surroundings is negligible. Determine the final temperature in the tank, in K. What is the entropy generation of the process? (Please treat the air as...
A rigid tank of volume 0.63 m3 initially has some air inside at 0.5 bar and...
A rigid tank of volume 0.63 m3 initially has some air inside at 0.5 bar and 300 K. A hole develops in the wall, and air from the surroundings at 1 bar, 300 K flows in until the pressure in the tank reaches 1 bar. Heat transfer between the contents of the tank and the surroundings is negligible. Determine the final temperature in the tank, in K. What is the entropy generation of the process? (Please treat the air as...
A rigid tank of volume 0.63 m3 initially has some air inside at 0.5 bar and...
A rigid tank of volume 0.63 m3 initially has some air inside at 0.5 bar and 300 K. A hole develops in the wall, and air from the surroundings at 1 bar, 300 K flows in until the pressure in the tank reaches 1 bar. Heat transfer between the contents of the tank and the surroundings is negligible. The final temperature is 350 K. Use the transient state entropy balcance to find the entropy generation of the process
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT