Question

In: Statistics and Probability

Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼...

Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼ N(0, 1).

1) Let Y1 = X12 + X12 and Y2 = X12− X22 . Find the joint p.d.f. of Y1 and Y2, and the marginal p.d.f. of Y1. Are Y1 and Y2 independent?

2) Let W = √X1X2/(X12 +X22) . Find the p.d.f. of W.

Solutions

Expert Solution

Answer:-

Given That:-

Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼ N(0, 1).

1) Let Y1 = X12 + X12 and Y2 = X12− X22 . Find the joint p.d.f. of Y1 and Y2, and the marginal p.d.f. of Y1. Are Y1 and Y2 independent?

Given,

independently

and

and

Jacobian:

PDF of :

  

where is the modified bessel function of the second kind are not independent.

2) Let W = √X1X2/(X12 +X22) . Find the p.d.f. of W.

Let

and , and

Since Then,

Jacobian:

PDF of (W,Z):

PDF of W:

Thank you for your supporting. please upvote my answer...


Related Solutions

X1, X2, ..., Xnare mutually independent, following standard normal distribution N(0, 1). Define X as the...
X1, X2, ..., Xnare mutually independent, following standard normal distribution N(0, 1). Define X as the sample mean... What is the distribution, mean and variance of X bar? What is the distribution, mean and variance of Xj-Xbar? Calculate the covariance of Xj and Xbar.
Let X1, X2,...,Xn be independent random variables from Normal (mu, sigma_i^2), i=1, 2,...,n, where mu is...
Let X1, X2,...,Xn be independent random variables from Normal (mu, sigma_i^2), i=1, 2,...,n, where mu is unknown and sigma_1^2, sigma_2^2,...,sigma_n^2 are known. Determine a sufficient statistic for mu. Derive the UMVUE and MLE of T(mu)=mu^3.
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2? (Note: The formulas we did were for the continuous case, so they don’t directly apply here, but you...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function; P(X = x) = λx/ (x!(eλ − 1)), x = 1, 2, 3... Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s. 1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ.
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (...
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. ( a) Compute the cdf of Y := min(X1, . . . , Xn). (b) Use (a) to compute the pdf of Y . (c) Find E(Y ).
Sample 1 has n1 independent random variables (X1, X2, ...Xn1) following normal distribution, N(µ1, σ21); and...
Sample 1 has n1 independent random variables (X1, X2, ...Xn1) following normal distribution, N(µ1, σ21); and Sample 2 has n2 independent random variables (Y1, Y2, ...Yn2 ) following normal distribution, N(µ2, σ22). Suppose sample 1 mean is X bar, sample 2 mean is Y bar , and we know n1 ,n2 , σ21 and σ22. Construct a Z statistic (i.e. Z~N(0, 1)) to test H0 : µ1 = µ2.
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT