Question

In: Statistics and Probability

Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...

  1. Let X1 and X2 have the joint pdf

    f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere

  2. (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1.
    (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1.
    (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2).
    (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).

Solutions

Expert Solution


Related Solutions

Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2)...
Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1                                       0,                  otherwise (ii) For the same joint pdf, calculate E(X1X2) and E(X1 + X2) (iii) Calculate Var(X1X2)
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find:...
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find: 1 The pdf of Z=X+Y 2 The pdf of Z=X.Y
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1...
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1 > 0, x2 > 0 0 elsewhere . For constants w1 > 0 and w2 > 0, let W = w1X1 + w2X2. (a) Show that the pdf of W is fW (w) = " 1 w1− w2 (e−w/w1 − e−w/w2) w > 0 0 elsewhere . (b) Verify that fW (w) > 0 for w > 0. (c) Note that the pdf fW...
   3. (i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf...
   3. (i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1                                       0,                  otherwise (ii) For the same joint pdf, calculate E(X1X2) and E(X1 + X2) (iii) Calculate Var(X1X2)
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf...
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf of Y1, Y2, Y3, and the marginal pdfs.
Let ?1 and ?2 have the joint pdf f (?1, ?2)= 6?2     0<?2<?1<1 =0 else where...
Let ?1 and ?2 have the joint pdf f (?1, ?2)= 6?2     0<?2<?1<1 =0 else where A. Find conditional mean and conditional variance ?1given?2 . B. Theorem of total mean and total variance?1given?2 .(urgently needed)
Let (A,B) have joint PDF f(a,b)=(ca^2b^2 when 0 < a,b,a+b < 1 and 0 otherwise for...
Let (A,B) have joint PDF f(a,b)=(ca^2b^2 when 0 < a,b,a+b < 1 and 0 otherwise for some constant c > 0. 1. Find a formula for E[A | B = b]. 2. Find Cov(A,B).
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf...
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf                     f(x1, x2) = 12x1x2(1-x2) , 0 < x1 <1   0 < x2 < 1 , otherwise             (ii) Calculate E(X1) and E(X2)     (iii) Are the variables X1 ­and X2 stochastically independent? (iv) Given the variables in the question, find the conditional p.d.f. of X1 given 0<x2< ½ and the conditional expectation E[X1|0<x2< ½ ].
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36...
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36 for X1 = 1, 2, 3 and X2 = 1, 2, 3, find the joint probability distribution of X1*X2 and the joint probability distribution of X1/X2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT