Question

In: Math

Let X1, X2, . . . be a sequence of independent and identically distributed random variables...

Let X1, X2, . . . be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function; P(X = x) = λx/ (x!(eλ − 1)), x = 1, 2, 3...

Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s.

1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ.

Solutions

Expert Solution

Let X1, X2, . . .XN be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function

Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s. The probability mass function is

1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ. Using the moment generating function(mgf), we found out the distribution of Y. Using the compound distribution function, If the primary distribution N has mgf MN(t) and the secondary distribution X has mgf MX(t), then the mgf of Y is

In terms of probability generating function(pgf), it is define as

So, we use pgf to get the distribution.

pgf of zero-truncated Poisson distribution is

pgf of binomial distribution is

Then, using the define equation

This is the probability generating function of Poisson distribution with mean nλ.



Related Solutions

Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a)...
Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a) Compute P{max(X1, X2,..., Xn) ≤ x} and find the pdf of Y = max(X1, X2,..., Xn). b) Compute P{min(X1, X2,..., Xn) ≤ x} and find the pdf of Z = min(X1, X2,..., Xn). c) Compute E(Y) and E(Z).
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to...
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to be the smallest k such that X1+X2+⋯+Xn exceeds cn=n2+12n−−√, namely, Nn = min{k≥1:X1+X2+⋯+Xk>ck} Does the limit limn→∞P(Nn>n) exist? If yes, enter its numerical value. If not, enter −999. unanswered Submit You have used 1 of 3 attempts Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2? (Note: The formulas we did were for the continuous case, so they don’t directly apply here, but you...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Let ?1 , ?2 , ... , ?? be independent, identically distributed random variables with p.d.f....
Let ?1 , ?2 , ... , ?? be independent, identically distributed random variables with p.d.f. ?(?) = ???−1, 0 ≤ ? ≤ 1 . c) Show that the maximum likelihood estimator for ? is biased, and find a function of the mle that is unbiased. (Hint: Show that the random variable −ln (??) is exponential, the sum of exponentials is Gamma, and the mean of 1/X for a gamma with parameters ? and ? is 1⁄(?(? − 1)).) d)...
Suppose that X1, X2, X3, X4 is a simple random (independent and identically distributed) sample of...
Suppose that X1, X2, X3, X4 is a simple random (independent and identically distributed) sample of size 4 from a normal distribution with an unknown mean μ but a known variance 9. Suppose further that Y1, Y2, Y3, Y4, Y5 is another simple random sample (independent from X1, X2, X3, X4 from a normal distribution with the same mean   μand variance 16. We estimate μ with U = (bar{X}+bar{Y})/2. where bar{X} = (X1 + X2 + X3 + X4)/4 bar{Y}...
Let Xi's be independent and identically distributed Poisson random variables for 1 ≤ i ≤ n....
Let Xi's be independent and identically distributed Poisson random variables for 1 ≤ i ≤ n. Derive the distribution for the summation of Xi from 1 to n. (Without using MGF)
Let ?1,?2,…,??be independent, identically distributed random variables with p.d.f. ?(?) = ??^?−1,0 ≤ ? ≤ 1...
Let ?1,?2,…,??be independent, identically distributed random variables with p.d.f. ?(?) = ??^?−1,0 ≤ ? ≤ 1 . c. Show that the maximum likelihood estimator for ? is biased, and find a function of the mle that is unbiased. (Hint: Show that the random variable −ln (??) is exponential, the sum of exponentials is Gamma, and the mean of 1/X for a gamma with parameters ? and ? is 1 / (?(? − 1)). d. Is the estimator you found in...
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on...
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on the unit interval). Let M be the middle value among the 101 numbers, with 50 values less than M and 50 values greater than M. (a). Find the approximate value of P( M < 0.45 ). (b). Find the approximate value of P( | M- 0.5 | < 0.001 ), the probability that M is within 0.001 of 1/2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT