In: Statistics and Probability
X∼(μ=4.5,σ=4) find P(X<10.2)
X∼(μ=4.5,σ=4) find P(X>-2.8)
For X∼(μ=4.5,σ=4) find P(6.7<X<15.9)
For X∼(μ=4.5,σ=4) find P(-4.9<X<-0.2)
For X∼(μ=4.4,σ=4) find the 2-th percentile.
For X∼(μ=17.4,σ=2.9) find the 82-th percentile.
For X∼(μ=48.1,σ=3.4) find the 13-th percentile.
For X∼(μ=17.4,σ=2.9) find the 49-th percentile.
For X∼(μ=48.1,σ=3.4) find P(X>39)
For X∼(μ=48.1,σ=3.4) find P(X<39)
Solution :
Given that ,
mean = = 4.5
standard deviation = = 4
P(x < 10.2) = P[(x - ) / < (10.2 - 4.5) / 4]
= P(z < 1.425)
= 0.9229
P(x < 10.2) = 0.9229
mean = = 4.5
standard deviation = = 4
P(x > -2.28) = 1 - P(x < -2.28)
= 1 - P((x - ) / < (-2.28 - 4.5) / 4)
= 1 - P(z < -1.695)
= 1 - 0.045
= 0.955
P(x > -2.28) = 0.955
mean = = 4.5
standard deviation = = 4
P(6.7 < x < 15.9) = P[(6.7 - 4.5)/ 4) < (x - ) / < (15.9 - 4.5) / 4) ]
= P(0.55 < z < 2.85)
= P(z < 2.85) - P(z < 0.55)
= 0.9978 - 0.7088
= 0.289
P(6.7 < x < 15.9) = 0.289
mean = = 4.5
standard deviation = = 4
P(-4.9 < x < -0.2) = P[(-4.9 - 4.5)/ 4) < (x - ) / < (-0.2 - 4.5) / 4) ]
= P(-2.35 < z < -1.175)
= P(z < -1.175) - P(z < -2.35)
= 0.12 - 0.0094
= 0.1106
P(-4.9 < x < -0.2) = 0.1106
mean = = 4.4
standard deviation = = 4
Using standard normal table,
P(Z < z) = 2%
P(Z < -2.05) = 0.02
z = -2.05
Using z-score formula,
x = z * +
x = -2.05 * 4 + 4.4 = -3.8
The 2-th percentile = -3.8
mean = = 17.4
standard deviation = = 2.9
Using standard normal table,
P(Z < z) = 82%
P(Z < 0.92) = 0.82
z = 0.92
Using z-score formula,
x = z * +
x = 0.92 * 2.9 + 17.4 = 20.07
The 82-th percentile = 20.07
mean = = 48.1
standard deviation = = 3.4
Using standard normal table,
P(Z < z) =13%
P(Z < -1.13) = 0.13
z = -1.13
Using z-score formula,
x = z * +
x = -1.13 * 3.4 + 48.1 = 44.26
The 13-th percentile = 44.26
mean = = 17.4
standard deviation = = 2.9
Using standard normal table,
P(Z < z) = 49%
P(Z < -0.025) = 0.49
z = -0.025
Using z-score formula,
x = z * +
x = -0.025 * 2.9 + 17.4 = 17.33
The 49-th percentile = 17.33
mean = = 4.5
standard deviation = = 4
P(x > 39) = 1 - P(x < 39)
= 1 - P((x - ) / < (39 - 48.1) / 3.4)
= 1 - P(z < -2.6765)
= 1 - 0.0037
= 0.9963
P(x > 39) = 0.9963
mean = = 4.5
standard deviation = = 4
P(x < 39) = P[(x - ) / < (39 - 48.1) / 3.4]
= P(z < -2.6765)
= 0.0037
P(x < 39) = 0.0037