Question

In: Statistics and Probability

A. For a population with μ = 62 and σ = 12, find the X value...

A.

For a population with μ = 62 and σ = 12, find the X value that corresponds to each of the following z-scores.

z = −0.25    
z = −1.50    
z = 0.50
z = 2.00

B. A person's blood glucose level and diabetes are closely related. Let x be a random variable measured in milligrams of glucose per deciliter (1/10 of a liter) of blood. Suppose that after a 12-hour fast, the random variable x will have a distribution that is approximately normal with mean μ = 88 and standard deviation σ = 24. Note: After 50 years of age, both the mean and standard deviation tend to increase. For an adult (under 50) after a 12-hour fast, find the following probabilities. (Round your answers to four decimal places.)

(a) x is more than 60


(b) x is less than 110


(c) x is between 60 and 110


(d) x is greater than 125 (borderline diabetes starts at 125)

Solutions

Expert Solution


Related Solutions

Let μ=E(X), σ=stanard deviation of X. Find the probability P(μ-σ ≤ X ≤ μ+σ) if X...
Let μ=E(X), σ=stanard deviation of X. Find the probability P(μ-σ ≤ X ≤ μ+σ) if X has... (Round all your answers to 4 decimal places.) a. ... a Binomial distribution with n=23 and p=1/10 b. ... a Geometric distribution with p = 0.19. c. ... a Poisson distribution with λ = 6.8.
X∼(μ=4.5,σ=4) find P(X<10.2) X∼(μ=4.5,σ=4) find P(X>-2.8) For X∼(μ=4.5,σ=4) find P(6.7<X<15.9) For X∼(μ=4.5,σ=4) find P(-4.9<X<-0.2) For X∼(μ=4.4,σ=4)...
X∼(μ=4.5,σ=4) find P(X<10.2) X∼(μ=4.5,σ=4) find P(X>-2.8) For X∼(μ=4.5,σ=4) find P(6.7<X<15.9) For X∼(μ=4.5,σ=4) find P(-4.9<X<-0.2) For X∼(μ=4.4,σ=4) find the 2-th percentile. For X∼(μ=17.4,σ=2.9) find the 82-th percentile. For X∼(μ=48.1,σ=3.4) find the 13-th percentile. For X∼(μ=17.4,σ=2.9) find the 49-th percentile. For X∼(μ=48.1,σ=3.4) find P(X>39) For X∼(μ=48.1,σ=3.4) find P(X<39)
A population is normally distributed with μ=300 and σ=20. A. Find the probability that a value...
A population is normally distributed with μ=300 and σ=20. A. Find the probability that a value randomly selected from this population will have a value greater than 345 B. Find the probability that a value randomly selected from this population will have a value less than 295 C. Find the probability that a value randomly selected from this population will have a value between 295 and 345 Click the icon to view the standard normal table. A. P( x >...
Suppose x has a distribution with μ = 12 and σ = 8. (a) If a...
Suppose x has a distribution with μ = 12 and σ = 8. (a) If a random sample of size n = 33 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(12 ≤ x ≤ 14) = (b) If a random sample of size n = 61 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx...
Suppose x has a distribution with μ = 12 and σ = 9. A.) If a...
Suppose x has a distribution with μ = 12 and σ = 9. A.) If a random sample of size n = 35 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to three decimal places.) P(12 ≤ x ≤ 14)= B.) If a random sample of size n = 62 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and...
Suppose x has a distribution with μ = 12 and σ = 7. (a) If a...
Suppose x has a distribution with μ = 12 and σ = 7. (a) If a random sample of size n = 31 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(12 ≤ x ≤ 14) = (b) If a random sample of size n = 75 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx...
Suppose x has a distribution with μ = 17 and σ = 12. (a) If a...
Suppose x has a distribution with μ = 17 and σ = 12. (a) If a random sample of size n = 33 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places and the probability to four decimal places.) P(17 ≤ x ≤ 19) = (b) If a random sample of size n = 71 is drawn, find μx, σx and P(17 ≤ x ≤ 19). (Round σx to two decimal places...
Suppose x has a distribution with μ = 12 and σ = 5. (a) If a...
Suppose x has a distribution with μ = 12 and σ = 5. (a) If a random sample of size n = 31 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(12 ≤ x ≤ 14) = (b) If a random sample of size n = 67 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx...
Suppose x is a normally distributed random variable with μ=30 and σ=5. Find a value  of the...
Suppose x is a normally distributed random variable with μ=30 and σ=5. Find a value  of the random variable x. (Round to two decimal places as needed.) p(x >): 0.95
A normal distribution has a mean of μ = 80 with σ = 12. Find the...
A normal distribution has a mean of μ = 80 with σ = 12. Find the following probabilities. (a) p(X > 83) (b) p(X < 74) (c) p(X < 92) (d) p(71 < X < 89)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT