In: Statistics and Probability
Round all your answers to 4 decimal places. Let μ=E(X), σ=stanard deviation of X. Find the probability P(μ-σ ≤ X ≤ μ+σ) if X has...
a. ... a Binomial distribution with n=6 and p=1/3.
b. ... a Geometric distribution with p = 0.63.
c. ... a Poisson distribution with λ = 7.2.
Solution :
Given that,
P( - 1< X < + 1)
(a)
n = 6
p = 1/3 = 0.3333
q = 1 - p = 1 - 0.3333 = 0.6667
Using binomial distribution,
= mean = n * p = 6 * 0.3333 = 1.9998
standard deviation = n * p * q = 6 * 0.3333 * 0.6667 = 1.1547
= 1.1547
P( - 1< X < + 1) =
P(1.9998 - 1.1547 < X < 1.9998 + 1.1547)
= P(0.8451 < X < 3.1545)
(b)
p = 0.63
= (1 - 0.63) / 0.63 = 0.5873
= (1 - 0.63) / 0.632 = 0.9655
P(0.5873 - 0.9655 < X < 0.5873 + 0.9655)
= P(0 < X < 1.5528)
(c)
= 7.2
= 2.6833
P(7.2 - 2.6833 < X < 7.2 + 2.6833)
= P(4.5167 < X < 9.8833)