In: Statistics and Probability
Find the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (Each pair of variables has a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The caloric content and the sodium content (in milligrams) for 6 beef hot dogs are shown in the table below.
|
Calories, x |
160 |
180 |
120 |
120 |
80 |
190 |
(a)
x=150 calories |
(b)
x=100 calories |
|
|---|---|---|---|---|---|---|---|---|---|
|
Sodium, y |
415 |
465 |
330 |
380 |
270 |
510 |
(c)
x=130 calories |
(d)
x=200 calories |
| X | Y | XY | X² | Y² |
| 160 | 415 | 66400 | 25600 | 172225 |
| 180 | 465 | 83700 | 32400 | 216225 |
| 120 | 330 | 39600 | 14400 | 108900 |
| 120 | 380 | 45600 | 14400 | 144400 |
| 80 | 270 | 21600 | 6400 | 72900 |
| 190 | 510 | 96900 | 36100 | 260100 |
| Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
| 850 | 2370 | 353800 | 129300 | 974750 |
| Sample size, n = | 6 |
| x̅ = Ʃx/n = | 141.667 |
| y̅ = Ʃy/n = | 395 |
| SSxx = Ʃx² - (Ʃx)²/n = | 8883.33 |
| SSyy = Ʃy² - (Ʃy)²/n = | 38600 |
| SSxy = Ʃxy - (Ʃx)(Ʃy)/n = | 18050 |
Slope, b = SSxy/SSxx = 2.031894934
y-intercept, a = y̅ -b* x̅ = 107.1482176
Regression equation :
ŷ = 107.1482 + (2.0319) x
Scatterplot:

a) Predicted value of y at x =150
ŷ = 107.1482 + (2.0319) * 150 = 411.9325
b) Predicted value of y at x = 100
ŷ = 107.1482 + (2.0319) * 100 = 310.3377
c) Predicted value of y at x = 130
ŷ = 107.1482 + (2.0319) * 130 = 371.2946
d) As X = 200 is outside the range of data of calories given in the sample we cannot calculate sodium