Question

In: Statistics and Probability

Let 'x' be a random variable that represents the length of time it takes a student...

Let 'x' be a random variable that represents the length of time it takes a student to write a term paper for Dr. Adam's Sociology class. After interviewing many students, it was found that 'x' has an approximately normal distribution with a mean of µ = 7.3 hours and standard deviation of ơ = 0.8 hours.

For parts a, b, c, Convert each of the following x intervals to standardized z intervals.

a.) x < 8.1  

z <

b.) x > 9.1  

z >

c.) 5.9 < x < 8.3

< z <

For parts d, e, f, Find the following probabilities: (Use 4 decimal places)

d.) P(x < 8.1) =

e.) P(x > 9.1) =

f.) P(5.9 < x < 8.3) =

Solutions

Expert Solution

Given that, mean (μ) = 7.3 hours and

standard deviation = 0.8 hours

a) x < 8.1

z = (8.1 - 7.3) / 0.8 = 1

=> z < 1

b) x > 9.1

z = (9.1 - 7.3) / 0.8 = 2.25

=> z > 2.25

c) 5.9 < x < 8.3

z = (5.9 - 7.3) / 0.8 = -1.75

z = (8.3 - 7.3) / 0.8 = 1.25

=> -1.75 < z < 1.25

d) P(x < 8.1) = P(z < 1) = 0.8413

=> P(x < 8.1) = 0.8413

e) P(x > 9.1) = P(z > 2.25) = 1 - P(z < 2.25) = 1 - 0.9878 = 0.0122

=> P(x > 9.1) = 0.0122

f) P(5.9 < x < 8.3)

= P(-1.75 < z < 1.25)

= P(z < 1.25) - P(z < -1.75)

= 0.8944 - 0.0401

= 0.8543

=> P(5.9 < x < 8.3) = 0.8543


Related Solutions

Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12-hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 88 and estimated standard deviation σ = 28. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single test,...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 96 and estimated standard deviation σ = 47. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 84 and estimated standard deviation σ = 29. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 60and estimated standard deviation σ = 32. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single test,...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 86 and estimated standard deviation σ = 35. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (d) Repeat part (b) for n = 5 tests...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12-hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 71 and estimated standard deviation σ = 30. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single test,...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 56 and estimated standard deviation σ = 42. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. A.) What is the probability that, on a single...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 51 and estimated standard deviation σ = 47. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 56 and estimated standard deviation σ = 24. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single...
Let x be a random variable that represents the level of glucose in the blood (milligrams...
Let x be a random variable that represents the level of glucose in the blood (milligrams per deciliter of blood) after a 12 hour fast. Assume that for people under 50 years old, x has a distribution that is approximately normal, with mean μ = 51 and estimated standard deviation σ = 47. A test result x < 40 is an indication of severe excess insulin, and medication is usually prescribed. (a) What is the probability that, on a single...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT