Question

In: Advanced Math

Use the Laplace transform to solve the following initial value problem: y′′−3y′−28y=δ(t−7) y(0)=0, y′(0)=0 y(t)=

Use the Laplace transform to solve the following initial value problem: y′′−3y′−28y=δ(t−7) y(0)=0, y′(0)=0

y(t)=

Solutions

Expert Solution


Related Solutions

Use the Laplace transform to solve the given initial-value problem. y'' + y = δ(t −...
Use the Laplace transform to solve the given initial-value problem. y'' + y = δ(t − 6π) + δ(t − 8π), y(0) = 1, y'(0) = 0
Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) =...
Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) = 0, y′(0) = 4
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0)...
Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0) = 0, y''(0) = 0.
Use Laplace transform to solve the initial value problem y''+y'= π with y(0) = π, y'(0)...
Use Laplace transform to solve the initial value problem y''+y'= π with y(0) = π, y'(0) = 0.
Use the Laplace transform to solve the following initial value problem, y′′ − y′ − 30y  ...
Use the Laplace transform to solve the following initial value problem, y′′ − y′ − 30y  =  δ(t − 7),y(0)  =  0,  y′(0)  =  0. The solution is of the form ?[g(t)] h(t). (a) Enter the function g(t) into the answer box below. (b) Enter the function h(t) into the answer box below.
Use the Laplace transform to solve the following initial value problem: x′=12x+3y y′=−9x+e^(3t) x(0)=0, y(0)=0 Let...
Use the Laplace transform to solve the following initial value problem: x′=12x+3y y′=−9x+e^(3t) x(0)=0, y(0)=0 Let X(s)=L{x(t)}, and Y(s)=L{y(t)}. Find the expressions you obtain by taking the Laplace transform of both differential equations and solving for Y(s) and X(s): X(s)= Y(s)= Find the partial fraction decomposition of X(s)X(s) and Y(s)Y(s) and their inverse Laplace transforms to find the solution of the system of DEs: x(t) y(t)
Use Laplace transforms to solve the initial value problem: y''' −y' + t = 0, y(0)...
Use Laplace transforms to solve the initial value problem: y''' −y' + t = 0, y(0) = 0, y'(0) = 0, y''(0) = 0.
1. Use a Laplace transform to solve the initial value problem: 9y" + y = f(t),...
1. Use a Laplace transform to solve the initial value problem: 9y" + y = f(t), y(0) = 1, y'(0) = 2 2. Use a Laplace transform to solve the initial value problem: y" + 4y = sin 4t, y(0) = 1, y'(0) = 2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT