Question

In: Advanced Math

Take the Laplace transform the following initial value problem and solve for Y(s)=L{y(t)} y”-6y’-27y={1, 0<=t<1 ;...


Take the Laplace transform the following initial value problem and solve for Y(s)=L{y(t)}
y”-6y’-27y={1, 0<=t<1 ; 0, 1<=t
y(0)=0, y’(0)=0
Y(s)=?
Now find the inverse transform to find y(t)=?
Note: 1/[s(s-9)(s+3)]=(-1/27)/s+(1/36)/(s+3)+(1/108)/(s-9)

Solutions

Expert Solution

. .

Your honest feedback is very important for better results.

Thanks


Related Solutions

Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t...
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t y(0)=0,y′(0)=0 Y(s)= ?    Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t). Use step(t-c) for the Heaviside function u(t−c) . y(t)= ?
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below....
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below. y'''+7y''+4y'-12y= -24, y(0) = 11, y'(0)= 5, y''(0) = -43
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below....
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below. y"-6y'+9y=cos 2t- sin 2t , y(0)=6, y'(0)=3
Use the Laplace transform to solve the given initial-value problem. y'' + 6y' + 34y =...
Use the Laplace transform to solve the given initial-value problem. y'' + 6y' + 34y = δ(t − π) + δ(t − 3π), y(0) = 1, y'(0) = 0 y(t) =( ? )+ ( ? )· U (t − π) + ( ? )· U (t − ? )
Take the Laplace transform of the following initial value and solve for X(s)=L{x(t)}X(s)=L{x(t)}: x′′+16x={sin(πt),0} 0≤t<1 1≤t...
Take the Laplace transform of the following initial value and solve for X(s)=L{x(t)}X(s)=L{x(t)}: x′′+16x={sin(πt),0} 0≤t<1 1≤t x(0)=0 x′(0)=0. a) X(s)=   Now find the inverse transform to find b) x(t)= Use u(t−a) for the Heaviside function shifted a units horizontaly.
Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0)...
Use a Laplace transform to solve the initial value problem: y''' =y+1, y(0) = 0, y'(0) = 0, y''(0) = 0.
Use the Laplace transform to solve the given initial value problem. y(4) − 4y''' + 6y''...
Use the Laplace transform to solve the given initial value problem. y(4) − 4y''' + 6y'' − 4y' + y = 0; y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 1
Use the Laplace transform to solve the given initial value problem. y(4) − 4y''' + 6y''...
Use the Laplace transform to solve the given initial value problem. y(4) − 4y''' + 6y'' − 4y' + y = 0; y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 1
se the Laplace transform to solve the given initial-value problem. y'' − 6y' = 10e^5t −...
se the Laplace transform to solve the given initial-value problem. y'' − 6y' = 10e^5t − 5e^−t, y(0) = 1, y'(0) = −1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT