Question

In: Statistics and Probability

3. (Not Bayesian) Let Y have pdf fY (y, θ) = 2(θ − y)/θ2 if 0...

3. (Not Bayesian) Let Y have pdf fY (y, θ) =
2(θ − y)/θ2
if 0 < y < θ
0 otherwise . You are
going to construct a confidence interval for θ based on a single observation Y .
(a) Show that Y/θ is pivotal quantity.
(b) Suppose Y = 6. Find (numerically) a 10% confidence interval for θ .

Solutions

Expert Solution

The given pdf of Y is

Let . When y=0, u=0 and when

Then and and

the pdf of U is given by

So the pdf of does not depend on and hence is a pivotal quantity.

Let a be the point such that

Then

implies

Therefore will be a 10% confidence interval for .

Now we will find the value of a.

We know P(a<U<1)=0.1

That is

or

Solving this quadratic equation we get the value of a as

So and the 10% confidence interval becomes


Related Solutions

Let Y1, ..., Yn be a random sample with the pdf: f(y;θ)= θ(1-y)^(θ-1) with θ>0 and...
Let Y1, ..., Yn be a random sample with the pdf: f(y;θ)= θ(1-y)^(θ-1) with θ>0 and 0<y<1. i) Obtain the minimum variance unbiased estimator ( for θ)
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find:...
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find: 1 The pdf of Z=X+Y 2 The pdf of Z=X.Y
Let Y = (Y1, Y2,..., Yn) and let θ > 0. Let Y|θ ∼ Pois(θ). Derive...
Let Y = (Y1, Y2,..., Yn) and let θ > 0. Let Y|θ ∼ Pois(θ). Derive the posterior density of θ given Y assuming the prior distribution of θ is Gamma(a,b) where a > 1. Then find the prior and posterior means and prior and posterior modes of θ.
3. Let Y be a singleobservation from a population with density function. f(y)=  2y/θ2 0 ≤ y...
3. Let Y be a singleobservation from a population with density function. f(y)=  2y/θ2 0 ≤ y ≤ θ   f(y)=  0     elsewhere (a) Find the MLE for θ. (b) Is the MLE found in (a) also a MVUE of θ? Justify your answer. (c) Show that Y/ θis a pivotal quantity for θ. (d) Use the pivotal Y /θ to find a 100(1 − α)% upper confidence interval for θ, which is of form (−∞, θˆU ). For the following questions, suppose for...
Let X and Y have the joint probabilitydensity function (pdf):?(?, ?) = 3/2 ?2(1...
Let X and Y have the joint probability density function (pdf):   f(x, y) = 3/2 x2(1 − y),        − 1 < x < 1,      − 1 < y < 1 Find P(0 < Y < X). Find the respective marginal pdfs of X and Y. Are X and Y independent? Find the conditional pdf of X give Y = y, and E(X|Y = 0.5).  
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1. (i) Find the conditional means of X given Y, and Y given X. (ii) Find the conditional variance of X given Y. (iii) Find the correlation coefficient between X and Y.
Let X have the pdf fX(x) = 3(1 − x) 2 , 0 < x <...
Let X have the pdf fX(x) = 3(1 − x) 2 , 0 < x < 1. (a) Find the pdf of Y = (1 − X) 3 . Specify the distribution of Y (name and parameter values). (b) Find E(Y ) and Var(Y ).
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2 and 0 otherwise 1) Find  P[X ≥ 1|Y ≤ 1.5] 2) Find P[X ≥ 0.5|Y ≤ 1]
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Crameer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) Find the distribution of Y = (X1 + ... + Xn)/n where X1, ..., Xn is an i.i.d. sample from fX(x, θ). If you can’t find Y, can you find an approximation of Y when n is large? b) Find the best estimator, i.e. MVUE, of θ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT