Question

In: Statistics and Probability

Let X have the pdf fX(x) = 3(1 − x) 2 , 0 < x <...

Let X have the pdf fX(x) = 3(1 − x) 2 , 0 < x < 1.

(a) Find the pdf of Y = (1 − X) 3 . Specify the distribution of Y (name and parameter values). (b) Find E(Y ) and Var(Y ).

Solutions

Expert Solution

Alternative method to find mean and variance of Y is

Result:-

For any uniform (a,b) distribution

Therefore,

For

And


Related Solutions

2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 <...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 < x < 1, 0 elsewhere. (a) Find the value of c such that fX(x) is indeed a PDF. (b) Find P(−0.5 < X < 0.3). (c) Find the median of X.
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find:...
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find: 1 The pdf of Z=X+Y 2 The pdf of Z=X.Y
Let X and Y have the joint probabilitydensity function (pdf):?(?, ?) = 3/2 ?2(1...
Let X and Y have the joint probability density function (pdf):   f(x, y) = 3/2 x2(1 − y),        − 1 < x < 1,      − 1 < y < 1 Find P(0 < Y < X). Find the respective marginal pdfs of X and Y. Are X and Y independent? Find the conditional pdf of X give Y = y, and E(X|Y = 0.5).  
1) The PDF of a Gaussian random variable is given by fx(x). fx(x)= (1/(3*sqrt(2pi) )*e^((x-4)^2)/18 determine...
1) The PDF of a Gaussian random variable is given by fx(x). fx(x)= (1/(3*sqrt(2pi) )*e^((x-4)^2)/18 determine a.) P(X > 4) b). P(X > 0). c). P(X < -2). 2) The joint PDF of random variables X and Y is given by fxy(x,y)=Ke^-(x+y), x>0 , y>0 Determine a. The constant k. b. The marginal PDF fX(x). c. The marginal PDF fY(y). d. The conditional PDF fX|Y(x|y). Note fX|Y(x|y) = fxy(x,y)/fY(y) e. Are X and Y independent.
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a...
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a probability. fX(2) is a set. It can only take values between 0 and 1 as input. fX(2) is a number. 2) Let X be a continuous random variable. What is true about FX(x)FX(x)? FX(x) is a strictly increasing function. It decreases to zero as x→∞x→∞. FX(2) is a probability. FX(x) can be any real number.
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Crameer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) Find the distribution of Y = (X1 + ... + Xn)/n where X1, ..., Xn is an i.i.d. sample from fX(x, θ). If you can’t find Y, can you find an approximation of Y when n is large? b) Find the best estimator, i.e. MVUE, of θ?
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 or -(x/θ)^2 if you cannot read that) a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1. (i) Find the conditional means of X given Y, and Y given X. (ii) Find the conditional variance of X given Y. (iii) Find the correlation coefficient between X and Y.
Let ?1 and ?2 have the joint pdf f (?1, ?2)= 6?2     0<?2<?1<1 =0 else where...
Let ?1 and ?2 have the joint pdf f (?1, ?2)= 6?2     0<?2<?1<1 =0 else where A. Find conditional mean and conditional variance ?1given?2 . B. Theorem of total mean and total variance?1given?2 .(urgently needed)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT