Question

In: Physics

A proton has an initial speed of 4.02E+5 m/s. What potential difference is required to bring...

A proton has an initial speed of 4.02E+5 m/s. What potential difference is required to bring the proton to rest?

What potential difference is required to reduce the initial speed of the proton by a factor of 3?

What potential difference is required to reduce the initial kinetic energy of the proton by a factor of 3?

Solutions

Expert Solution


Related Solutions

(a) At what speed (in m/s) will a proton move in a circular path of the...
(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 8.00 ✕ 106 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.15 ✕ 10−5 T? m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? m (c) What would the radius (in m) be if the proton...
A proton is traveling with a speed of (4.010±0.018)× 10 5 m/s . Part A With...
A proton is traveling with a speed of (4.010±0.018)× 10 5 m/s . Part A With what maximum precision can its position be ascertained? Express your answer using two significant figures. ?x? ____ m
A potential wind turbine location has an average wind speed of 5 m/s at a height...
A potential wind turbine location has an average wind speed of 5 m/s at a height of 10 m. A) Assuming a standard wind friction coefficient of 1/7, what is the average wind power per area at the proposed tower height of 80 m? B) If the proposed turbine has a cut-in speed of 4 m/s and a furling speed of 20 m/s, how many hours per year is the windmill not spinning (assuming Rayleigh statistics)? C) Estimate the yearly...
A projectile proton with a speed of 380 m/s collides elastically with a target proton initially...
A projectile proton with a speed of 380 m/s collides elastically with a target proton initially at rest. The two protons then move along perpendicular paths, with the projectile path at 41° from the original direction. After the collision, what are the speeds of (a) the target proton and (b) the projectile proton? Please try to explain it as well as you can thank you
A proton moving horizontally at a speed of 2.88x10^5 m/s enters a region of space between...
A proton moving horizontally at a speed of 2.88x10^5 m/s enters a region of space between two square metal plates of side length 8.77 mm. The proton's path is deflected an angle of 12º upward. Protons have a mass of 1.67x10^-27 kg. a) Determine the electric field between the plates. b)Determine the amount and sign of electric charge on each plate.
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of...
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of 1.70 electron volt (eV). (The electron and proton masses are me = 9.11 ✕ 10−31 kg and mp = 1.67 ✕ 10−27 kg. Boltzmann's constant is kB = 1.38 ✕ 10−23 J/K.) (a) an electron m/s (b) a proton m/s (c) Calculate the average translational kinetic energy in eV of a 3.15 ✕ 102 K ideal gas particle. (Recall from Topic 10 that 1...
A proton has an initial velocity of 7.6 × 106 m/s in the horizontal direction. It...
A proton has an initial velocity of 7.6 × 106 m/s in the horizontal direction. It enters a uniform electric field of 8800 N/C directed vertically. a) Ignoring gravitational effects, find the time it takes the proton to travel 0.127 m horizontally. The mass of the proton is 1.6726 × 10−27 kg and the fundamental charge is 1.602 × 10−19 C . Answer in units of ns. b)What is the vertical displacement of the proton after the electric field acts...
A-Calculate the speed of a proton after it accelerates from rest through a potential difference of...
A-Calculate the speed of a proton after it accelerates from rest through a potential difference of 220V . B-Calculate the speed of an electron after it accelerates from rest through a potential difference of 220V .
An electron with an initial speed of 5.05x10^5 m/s is brought to rest by an electric...
An electron with an initial speed of 5.05x10^5 m/s is brought to rest by an electric field. The charge of an electron is -1.60x10^-19C and its mass is 9.11x 10^-31 kg. a) did the electron move into a region of higher electric potential or lower electric potential? Explain b) What was the electric potential difference that stopped the electron?
1.) A proton moves with a speed of 5.5 x 10^5 m/s along the +x axis....
1.) A proton moves with a speed of 5.5 x 10^5 m/s along the +x axis. It enters a region where there is uniform magnetic field of 1.5 T, directed of 30 degrees to the x-axis and lying in the x-y plane. Calculate the initial force and acceleration of the proton. 2.) A wire carries a current of 4.5-A in a direction of 35 degrees with respect to the direction of a magnetic field of 0.5 T. Find the magnitude...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT