Question

In: Physics

A 115 N block moves on a flat surface at an initial speed of 5 m/s....

A 115 N block moves on a flat surface at an initial speed of 5 m/s. The coefficient of kinetic friction between the block and the surface is 0.28. The block is 2.2 meters away from the beginning of a spring with a coefficient of 150 N/m. The spring is initially in its stable state and has a length of 140 centimeters.

Show the Work and Energy substituted equation for this case.

You are not required to solve it, but if you want to demonstrate it you can do so

Solutions

Expert Solution

Hi Dear Respected student I'm glad to answer such a nice question for you. I hope it helps. I tried my best to provide you with a quality answer with you . I tried to utilize my full time and knowledge for this. Its quite easy and simple I believe that you will understand this in one read. Yes you can do this. Please carefully go through answer till last word. And oh yes I appreciate your hunger of grabbing knowledge keep it always up like this.

So here is your answer :

Please Feel free to ask you doubts if any. Your suggestions are most welcomed. To improve our work quality.  
Please appreciate my hardwork by upvote/thumbs it will be really helpful .
Thanks for your valuable time.
Thanks for choosing this platform. All the best for your future and career. Keep learning like this always. Stay safe stay healthy. Take a good care of yourself and family . Have a great life ahead

Thanks you so much:)


Related Solutions

A block of mass 4m moves on a flat horizontal surface at speed v, and strikes...
A block of mass 4m moves on a flat horizontal surface at speed v, and strikes another block of mass m, that is attached via a horizontal spring to another block of mass 2m. The two masses are stationary.  The spring constant is k. All collisions are completely inelastic and there is no friction anywhere. What is the velocity of the center of mass when the spring is ¼ the way to max compression.
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s....
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s. The block encounters an unstretched spring with a force constant of 231 N/m. Before the block comes to rest, the spring is compressed by 9.17 cm. 1) Suppose the force constant of the spring is doubled, but the mass and speed of the block remain the same. By what multiplicative factor do you expect the maximum compression of the spring to change? Explain. 2)...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 980 N/m . The block comes to rest after compressing the spring 4.15 cm. A.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm. B.Find the spring potential energy, U, the kinetic energy of the block, K,...
3) A 2 kg block is sliding at an initial speed of 10 m/s across a...
3) A 2 kg block is sliding at an initial speed of 10 m/s across a surface, encountering a constant friction force of 7 N. How much work is done on the block after it slides 22 cm? Answer:   Hint: Does the block gain or lose energy during this process? What sign does this imply for the work done on it? 4) How fast is the block moving after sliding 22 cm? Answer:   Hint: You can treat the block like...
An electron with an initial speed of 5.05x10^5 m/s is brought to rest by an electric...
An electron with an initial speed of 5.05x10^5 m/s is brought to rest by an electric field. The charge of an electron is -1.60x10^-19C and its mass is 9.11x 10^-31 kg. a) did the electron move into a region of higher electric potential or lower electric potential? Explain b) What was the electric potential difference that stopped the electron?
A 5 kg block starting with an initial velocity of 7.69 m/s travels a distance of...
A 5 kg block starting with an initial velocity of 7.69 m/s travels a distance of x m along a rough surface that has a coefficient of kinetic friction of μ=0.15. It then travels up a frictionless ramp at an angle of 17.0⁰ to a height of 1.38 m until it stops. How far does it travel along the rough surface - what is the x? (Note there may be more information provided in the problem statement than you need...
A disk rolls along a flat surface at a constant speed of 10m/s. Diameter is 0.5m....
A disk rolls along a flat surface at a constant speed of 10m/s. Diameter is 0.5m. At a particular instant P, at the edge of the disk, is 45 degree from the horizontal at the centre. what is the magnitude acceleration of the point of contact of the disk?
1.) A proton moves with a speed of 5.5 x 10^5 m/s along the +x axis....
1.) A proton moves with a speed of 5.5 x 10^5 m/s along the +x axis. It enters a region where there is uniform magnetic field of 1.5 T, directed of 30 degrees to the x-axis and lying in the x-y plane. Calculate the initial force and acceleration of the proton. 2.) A wire carries a current of 4.5-A in a direction of 35 degrees with respect to the direction of a magnetic field of 0.5 T. Find the magnitude...
Mass M moves to the right with speed =v along a frictionless horizontal surface and crashes...
Mass M moves to the right with speed =v along a frictionless horizontal surface and crashes into an equal mass M initially at rest. Upon colliding, the two masses stick together and move with speed V to the right. Notice that v and V denote different speeds.  After the collision the magnitude of the momentum of the system is: (pick all correct answers) 2 M V M V 0 2 M v M v
A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into...
A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into two parts of equal mass that fly at speeds v1 and v2. Obtain the magnitude of the velocity of each part in which the rocket broke.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT