Question

In: Physics

Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of...

Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of 1.70 electron volt (eV). (The electron and proton masses are me = 9.11 ✕ 10−31 kg and mp = 1.67 ✕ 10−27 kg. Boltzmann's constant is kB = 1.38 ✕ 10−23 J/K.)

(a) an electron m/s

(b) a proton m/s

(c) Calculate the average translational kinetic energy in eV of a 3.15 ✕ 102 K ideal gas particle. (Recall from Topic 10 that 1 2 mv2 = 3 2 kBT.)

___eV

Solutions

Expert Solution

Given:-

  • Kinetic energy of electron and proton
  • Mass of electron
  • Mass of proton
  • Boltzmann constant
  • Temperature of ideal gas particle

Now we have the relation of kinetic energy (K) and speed of the particle and is given as,

(a) Speed of an electron in m/s :-

                 

An electron with kinetic energy of 1.70 eV has speed

(b) Speed of a proton in m/s :-

A proton with kinetic energy of 1.70 eV has speed

(c) Average translational kinetic energy at temperature T = 315 K is given as,

We know that kinetic energy is directly proportional to temperature of the gas for ideal gas.

         where,

                         K = Kinetic energy,   = Boltzmann constant and

                         T = Temperature = 315 K

is the required average translational kinetic energy.


Related Solutions

Find the momentum and speed of a proton whose kinetic energy equals its rest energy.
Find the momentum and speed of a proton whose kinetic energy equals its rest energy.
Consider a proton moving with a speed of 7.0 × 103 m/s. a) Calculate the de...
Consider a proton moving with a speed of 7.0 × 103 m/s. a) Calculate the de Broglie wavelength of this proton. Consider an electron having a de Broglie wavelength that matches that of the proton found in part a). b) Calculate the speed of this electron. c) Consider an electron and a proton with precisely the same momentum. How do their de Broglie wavelength’s compare?
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy...
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy theorem to find the work required to increase its speed to the following speeds. A. .710c answer in units of MeV? b..936c answer in units of Gev?
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy...
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy theorem to find the work required to increase its speed to the following speeds. (a) 0.530c MeV (b) 0.940c GeV
Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at...
Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at each of the speeds tabulated below. v p (keV/c) K (keV) E (keV) (a) 0.03c (b) 0.4c (c) 0.9c
A projectile proton with a speed of 380 m/s collides elastically with a target proton initially...
A projectile proton with a speed of 380 m/s collides elastically with a target proton initially at rest. The two protons then move along perpendicular paths, with the projectile path at 41° from the original direction. After the collision, what are the speeds of (a) the target proton and (b) the projectile proton? Please try to explain it as well as you can thank you
A proton moves with a speed of 0.895c. (a) Calculate its rest energy. _____MeV (b) Calculate...
A proton moves with a speed of 0.895c. (a) Calculate its rest energy. _____MeV (b) Calculate its total energy. ____GeV (c) Calculate its kinetic energy._____GeV
a) An electron with 10.0 eV kinetic energy hits a 10.1 eV potential energy barrier. Calculate...
a) An electron with 10.0 eV kinetic energy hits a 10.1 eV potential energy barrier. Calculate the penetration depth. b) A 10.0 eV proton encountering a 10.1 eV potential energy barrier has a much smaller penetration depth than the value calculated in (a). Why? c) Give the classical penetration depth for a 10.0 eV particle hitting a 10.1 eV barrier.
1) An electron has a kinetic energy that is 50% larger than its classical kinetic energy....
1) An electron has a kinetic energy that is 50% larger than its classical kinetic energy. Electron mass is 0.511 MeV/c^2. a. What is the speed of the electron expressed in the unit of speed of light c? b. What is the total energy of the electron expressed in the unit of MeV? c. What is the kinetic energy of the electron expressed in the unit of MeV?
A proton is traveling with a speed of (4.010±0.018)× 10 5 m/s . Part A With...
A proton is traveling with a speed of (4.010±0.018)× 10 5 m/s . Part A With what maximum precision can its position be ascertained? Express your answer using two significant figures. ?x? ____ m
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT