Question

In: Chemistry

25.0 g of water cooled 10 C to -20 C. Calculate the total Energy change. With...

25.0 g of water cooled 10 C to -20 C. Calculate the total Energy change.

With these useful numbers: ΔH fus = 334 J/g Δvap = 2260 J/g Cp for ice = 2.08 J/g ⁰C Cp for liquid water = 4.18 J/g ⁰C Cp for steam = 1.8 J/g ⁰C

Solutions

Expert Solution

Q = heat change for conversion of water at 10oC to water at 0 oC + heat change for conversion of water at 0oC to ice at 0oC + heat change for conversion of ice at 0 oC to ice at -20 oC

Amount of heat released , Q = mcdt + mL + mc'dt

                                          = m(cdt + L + c'dt' )

Where

m = mass of water = 25.0 g

c = Specific heat of water = 4.18 J/g degree C

c' = Specific heat of ice= 2.08 J/g degree C

L = Heat of fusion of ice = 334 J/g

dt = 10 -0 =10 oC

dt' = 0-(-20) = 20 oC

Plug the values we get Q = m(cdt + L + c'dt' )

                                      = 10.464 J

                                      = 10.44 kJ


Related Solutions

Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C....
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. KBr(s)↽−−⇀K+(aq)+Br−(aq) ΔGrxn°=    ?    kJ/mol Determine the concentration of K+(aq) if the change in Gibbs free energy, nΔGrxn, for the reaction is −8.95 kJ/mol. [K+] =    ? M
Calculate the amount of energy in kilojoules needed to change 315 g of water ice at...
Calculate the amount of energy in kilojoules needed to change 315 g of water ice at –10 ∘C to steam at 125 ∘C. The following constants may be useful: Cm (ice)=36.57 J mol−1 ∘C−1 Cm (water)=75.40 J mol−1 ∘C−1 Cm (steam)=36.04 J mol−1 ∘C−1 ΔfusH=+6.01 kJ mol−1 ΔvapH=+40.67 kJ mol−1
Calculate the amount of energy in kilojoules needed to change 333 g of water ice at...
Calculate the amount of energy in kilojoules needed to change 333 g of water ice at −10 ∘C to steam at 125 ∘C. The following constants may be useful: Cm (ice)=36.57 J/(mol⋅∘C) Cm (water)=75.40 J/(mol⋅∘C) Cm (steam)=36.04 J/(mol⋅∘C) ΔHfus=+6.01 kJ/mol ΔHvap=+40.67 kJ/mol
Calculate the amount of energy in kilojoules needed to change 153 g of water ice at...
Calculate the amount of energy in kilojoules needed to change 153 g of water ice at –10 ∘C to steam at 125 ∘C. The following constants may be useful: Cm (ice)=36.57 J mol−1 ∘C−1 Cm (water)=75.40 J mol−1 ∘C−1 Cm (steam)=36.04 J mol−1 ∘C−1 ΔfusH=+6.01 kJ mol−1 ΔvapH=+40.67 kJ mol−1
A 50.0-g sample of liquid water at 25.0°C is mixed with 35.0 g of water at...
A 50.0-g sample of liquid water at 25.0°C is mixed with 35.0 g of water at 89.0°C. The final temperature of the water is ________°C.
100 g of ice at -20°C are mixed with 250 g of water at 20°C in...
100 g of ice at -20°C are mixed with 250 g of water at 20°C in an insulated calorimeter. What is the final temperature of the system? How many grams of liquid water and how many grams of ice will you find after the system equilibrates? find T in degrees C; m of solid (in grams); m of liquid (in grams) T=____ ms=____ mliq=____
Calculate the change in molar Gibbs energy of carbon dioxide (treated as a perfect gas) at 20°C
Calculate the change in molar Gibbs energy of carbon dioxide (treated as a perfect gas) at 20°C when its pressure is changed isothermally from 1.0 bar to (a) 2.0 bar, (b) 0.00027 atm, its partial pressure in air.
Two 20.0-g ice cubes at –21.0 °C are placed into 295 g of water at 25.0...
Two 20.0-g ice cubes at –21.0 °C are placed into 295 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) 37.7 heat capacity of H2O (l) 75.3 enthalpy of fusion of H2O 6.01
Two 20.0-g ice cubes at –19.0 °C are placed into 245 g of water at 25.0...
Two 20.0-g ice cubes at –19.0 °C are placed into 245 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. Heat capacity of H20(s) = 37.7J/(mol*K) Heat cap of H20(l) 75.3 J/(mol*K) enthalpy of fusion of H20 = 6.01 kJ/mol
Two 20.0-g ice cubes at –16.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –16.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. Given the Following Values: Heat Capacity of H2O (s) = 37.7 J/mol*K Heat Capacity of H2O (l) = 75.3 J/mol*K Enthalpy of Fusion of H2O = 6.01 kJ/mol
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT