Question

In: Statistics and Probability

An expert who works for a car magazine obtained random data (rounded to the nearest thousand)...

An expert who works for a car magazine obtained random data (rounded to the nearest thousand) among two categories of used or new cars:

Domestic
Foreign

The expert would like to understand sales based on list price (rounded to the nearest thousand dollars), sale price (rounded to the nearest thousand dollars), and number of days it takes to sell each car. The complete data set is in the file named Cars.

Managerial Report

Prepare a report (see below) that summarizes your assessment of the nature of the car market. Be sure to include the following seven items in your report.

1 Descriptive statistics (mean, median, range, standard deviation, and coefficient of variation) to summarize each of the three variables for the all Domestic cars. Use z-scores to determine if there any outliers in the data set for any of the three variables. If there are any outliers in any category, please list them and state for which category they are an outlier. If a result is an outlier, state whether it is below or above the mean.

2 Descriptive statistics (mean, median, range, standard deviation, and coefficient of variation) to summarize each of the three variables for the all Foreign cars. Use z-scores to determine if there any outliers in the data set for any of the three variables. If there are any outliers in any category, please list them and state for which category they are an outlier. If a result is an outlier, state whether it is below or above the mean.

3 Compare your summary results from #1 and #2. Discuss any specific statistical results that would help the car expert understand the car market.

4 Develop a 98% confidence interval estimate of the population mean sales price and population mean number of days to sell for Domestic cars. What is the Margin of error? What are the lower (or left) and upper (or right) endpoints of the confidence interval? Interpret your results.

5 Develop a 98% confidence interval estimate of the population mean sales price and population mean number of days to sell for Foreign cars. What is the Margin of error? What are the lower (or left) and upper (or right) endpoints of the confidence interval? Interpret your results.

6 Assume the car expert requested estimates of the mean number of days to sell for the Domestic cars with a margin of error of seven days and the mean number of days of Foreign cars with a margin of error of eight days. Using 98% confidence, how large should the sample sizes be for each?

7 Suppose a Domestic car has a list price of $30,000 and a Foreign car has a list price of $30,000. What is your estimate of the final selling price (based on the percent difference for the sale and list price) and number of days required to sell each of these cars?

Domestic Cars Foreign Cars
Car List Price in K Sale Price in K Days to Sell List Price in K Sale Price in K Days to Sell
1 6.1 4.4 36 83.1 78.5 101
2 67.6 66.8 51 59.6 57.1 62
3 14 13.4 87 37 32.5 63
4 83.4 80.5 80 43.4 43.2 47
5 40 35.4 38 16.3 15 93
6 56 52 24 8.3 5.9 21
7 71.2 68.7 27 29.2 27.5 107
8 50.7 49.7 52 32.7 32.7 15
9 4.9 4.3 74 23.9 23.5 12
10 70.5 66.5 84 85.5 85.1 58
11 58 56 30 19 16.3 96
12 75 73.7 31 19 18.9 106
13 2.8 1.1 88 80.8 77.4 50
14 7.7 4 11 17.7 15.6 42
15 20 16.2 20 71.4 70.4 75
16 23 21.5 71 16.1 13.8 62
17 6.2 6 88 49.2 45.2 91
18 18 14 43 40 38 6
19 97 93.2 95 32 29.2 52
20 69.2 66.8 37 27.2 22.5 71
21 63.5 60.7 13 85.5 82.8 106
22 65 61.9 60 87.4 85.7 91
23 9.9 7 24 58.9 56.9 83
24 90.2 88.3 42 56.2 52.8 29
25 56 55 91 13.5 10 76
26 80 75.2 39 55.7 54.2 40
27 58.7 58.3 58 75.7 74.6 47
28 33.1 32.9 47 89.1 85.7 67
29 31.5 28.7 86 3.5 3.2 106
30 54.5 54.1 88 67.5 65.3 100
31 22.4 17.8 30 41.4 40.1 10
32 40.3 38.4 29 45.3 43.3 36
33 27.2 22.6 34 87.2 85.1 61
34 14.4 14.1 12 16.4 14.3 65
35 5.6 1.5 86 32.6 29.1 25
36 42.2 40.8 72 14.2 14.2 39
37 9.5 6.2 69 60.5 59.1 79
38 93.1 90.5 32 73.1 68.3 83
39 10.7 7.3 15 48.7 44.7 65
40 93.3 91.7 15 38.3 38.2 35
41 50 49.1 19 6.6 4.3 6
42 33.2 29.6 27 86.2 81.4 53
43 67 60 18 5 4.6 108
44 56 53.1 54 37 32.7 85
45 49.5 48.2 37 23.5 21.2 32
46 52.7 48.8 66 90.7 87.4 97
47 41.1 39.7 78 84.1 83.8 16
48 72.1 70.9 12 45.1 42.7 38
49 50 46.9 84 51.7 49.9 53
50 88 84.2 20 36 34.6 97
51 11.8 11.3 20 66.8 65 45
52 69.5 69 90 54.5 50.2 31
53 63 62.6 35 33 33 44
54 60 58.1 46 11.4 10.8 92
55 66.7 66.1 47 59.7 57.9 49
56 58 55.5 51 84.2 80.1 52
57 67.2 62.7 96 48.2 43.4 101
58 74.9 70.4 59 68.9 64.9 14
59 71.4 70.2 14 60.4 59.9 98
60 71.1 67.8 75 87.1 85.1 90
61 54 54 52 68.3 66.4 61
62 19.9 17.2 60 8.9 7.5 32
63 49.5 48.6 56 39.5 39.3 48
64 56.8 54.8 11 57.8 53.1 29
65 74 71.3 71 59 57.5 98
66 20.4 17 31 22.4 19.4 6
67 34.5 32.5 40 78.5 77.3 6
68 17.2 14.4 29 11.2 9.4 83
69 45 42.5 72 86.2 82 79
70 82 81 32 4 3.5 70
71 40 39.3 21 22.6 21.1 38
72 16 12.4 62 36 36 18
73 25 20.1 72 88 87.1 26
74 64.1 61.5 10 88.1 85.2 41
75 39.5 35.4 71 66.5 61.8 100
76 72 67.3 97 4.1 3.1 7
77 13 10.4 80 22 20.6 11
78 37.1 36.1 26 71.1 70.5 33
79 67.7 62.7 29 36.7 33.5 42
80 40 36.6 28 69.2 66.3 9
81 55.9 52.8 71 14.9 12.6 94
82 51 47.4 81 81 78.8 104
83 50 45.4 41 46.9 44.3 25
84 44.2 41 15 11.2 6.6 69
85 12 9.8 31 7 5.3 66
86 72 70 78 36 31.9 52
87 51.6 46.6 84 49.6 46.8 39
88 54.4 52.6 26 42.4 38.3 92
89 44.5 42.5 92 4.5 4 46
90 61.6 60.9 19 31.6 31 64
91 34.1 33.1 91 57.1 53.3 38
92 80 79 38 42 39 64
93 61.9 61.1 85 71.9 71 11
94 74.6 73.4 84 86.6 86.5 11
95 17 14.5 90 90 87.2 6
96 10.8 7.9 70 47.8 42.9 73
97 44.7 43.8 61 52.7 52.6 66
98 11.7 10.3 73 35.7 32 31
99 97.9 95.9 92 44.9 43.3 24
100 67.5 63 10 21.5 19.4 89
101 64 61.9 43 84.3 83.2 31
102 97.7 93.7 73 69.7 65.7 100
103 8.9 6.5 87 37.9 37.9 43
104 51.3 47.7 18 49.3 45.5 18
105 56 53.1 47 82.7 82.5 67
106 12.6 8.4 95 3.6 3.2 7
107 42.6 38.7 73 53.6 48.9 87
108 50 47.7 84 74.2 69.2 11
109 25.7 24.8 38 56.7 53.2 50
110 72.4 67.6 98 54.4 51 69
111 20.7 18.3 16 38.7 34 28
112 62.3 57.9 13 4.3 2.9 85
113 41.4 37.4 61 19.4 15.9 7
114 50 49 97 16.5 12.8 95
115 77.9 76.7 84 41.9 41 52
116 10 9.2 25 73 69.4 98
117 80 76.1 44 56 55.9 68
118 61.5 60 48 69.5 68.9 43
119 61.1 58.3 73 36.1 32.4 85
120 38.6 34.2 54 32.6 28 7
121 73.9 68.9 39 85.9 80.9 63
122 30 30 94 68.9 68.8 26
123 56 51.3 17 81.3 78.6 53
124 39 36.1 72 52 50.4 104
125 7.4 3.5 81 60.4 58.2 67
126 74.9 74.5 16 23.9 19.4 43
127 40 37.9 43 59.6 55.8 28
128 43 39 23 44.5 44.3 54
129 28.8 24.6 67 90.8 88.8 67
130 14.5 10.5 14 66.5 63.5 11
131 10.8 9.9 59 60.8 56 19
132 6.6 1.9 12 83.6 82.5 8
133 12.6 10.7 51 35.6 33.7 41
134 3.4 0.2 86 81.4 78.5 45
135 40.6 40.6 30 8.6 3.7 12
136 67 63.5 70 7.2 6.3 35
137 33.6 32 97 80.6 75.7 44
138 67 66 59 3.5 3.2 84
139 14 9.5 94 52 49.4 24
140 22.7 19.7 34 6.7 2.7 18
141 69.6 65.6 26 54.6 49.6 65
142 68.7 65.2 38 11.7 8.5 13
143 70 68 95 84.7 82.7 83
144 57 54 89 57.9 57.1 103
145 56.6 54.6 89 22.6 18.3 97
146 69.4 69.2 80 85.4 80.9 77
147 81.7 77.3 86 72.7 70.8 22
148 70 65.8 72 30.3 28.5 57
149 39.3 37.2 52 10.3 6.2 108
150 16.8 13.3 49 80.8 80.1 11
151 65.3 62.5 19 64.3 59.6 100
152 15.9 14 91 31.9 29 84
153 57.5 54.8 72 70.5 66.5 45
154 55.7 55 61 7.7 5.7 71
155 67.3 63.5 39 20.3 16.5 54
156 10 9.6 72 56 52.3 77
157 96 94.1 81 6 2.1 46
158 57.7 55.7 22 24.7 23.7 75
159 15.7 15.2 77 59.7 55.4 35
160 12.2 7.8 94 53.2 48.8 13
161 56.1 52.5 58 48.1 47.8 24
162 10.3 9.6 36 19.3 16.3 64
163 58 54.7 98 6.3 3.5 61
164 7.5 6.5 59 26.5 22 84
165 14.4 12.8 62 44.4 43.7 59
166 57.5 57.4 46 89.5 89.2 36
167 40.1 39.7 68 69.1 67.5 49
168 23.3 21 33 48.3 44.7 103
169 59 57.9 53 89 84.4 108
170 24.2 19.3 33 56.2 54.6 20
171 62 59.2 22 30 25.1 67
172 45 40.7 37 57.8 56.3 42
173 42 42 33 70.4 68.5 16
174 60 59.5 54 50.1 46.5 43
175 77.8 75 32 18.8 15.9 63
176 73 70 76 24 22.2 103
177 13.4 12 53 38.4 35.5 16
178 29 27.9 57 73.6 71.5 93
179 97 92.7 31 25 24.7 60
180 10 7.7 62 19 18.5 70
181 21.7 19.5 13 49.7 49.6 47
182 42.9 41.1 69 67.9 63.2 107
183 23 20 42 28.6 28.3 50
184 35 34.7 15 26.7 24.2 40
185 3.4 3.3 34 51.4 47 25
186 45 40.6 72 53.5 53.1 99
187 7.9 4.6 50 6.9 2.2 23
188 44 41.2 63 9.1 6.2 97
189 8 3.1 36 70 68.3 83
190 33 31.9 27 17 13 106
191 2.6 2.4 63 57.6 55.6 87
192 24 23 63 19.2 17.8 52
193 23.6 19.7 30 34.6 32.2 46
194 49.1 45.3 67 57.1 54.2 37
195 1.5 1.3 69 80.5 80.4 98
196 57.4 52.8 89 81.4 80.4 108
197 60.9 59.8 56 69.9 69 88
198 59.7 56.1 65 16.7 14.9 106
199 1.8 1.7 20 78.8 75.4 7
200 63.1 61.7 40 54.1 52.2 57

Solutions

Expert Solution

Solution1:

Domestic Cars_List Price in K Domestic Cars_Sale Price in K Domestic Cars_Days to Sell
Mean 44.854 Mean 42.3965 Mean
Median 49.3 Median 45.35 Median
Standard Deviation 25.33192087 Standard Deviation 25.21323011 Standard Deviation
Range 96.4 Range 95.7 Range
Coefficientofvariation 56.47639201 Coefficientofvariation 59.47007444 Coefficientofvariation

z score is x-mean/sd

|Z|>3 are outliers

Subtract each bvalue form mean

divide by stddev You will get Z score

Take the moduus of Z score

Domestic Cars_List Price in K(X) Mean Stddev X-mean Z =x-mean/sd |Z|=abs(Z)
6.1 44.854 25.33192 -38.754 -1.529848455 1.529848
67.6 44.854 25.33192 22.746 0.897918485 0.897918
14 44.854 25.33192 -30.854 -1.217988962 1.217989
83.4 44.854 25.33192 38.546 1.521637471 1.521637
40 44.854 25.33192 -4.854 -0.191615947 0.191616
56 44.854 25.33192 11.146 0.439998216 0.439998
71.2 44.854 25.33192 26.346 1.040031671 1.040032
50.7 44.854 25.33192 5.846 0.230776025 0.230776
4.9 44.854 25.33192 -39.954 -1.577219517 1.57722
70.5 44.854 25.33192 25.646 1.012398552 1.012399
58 44.854 25.33192 13.146 0.518949987 0.51895
75 44.854 25.33192 30.146 1.190040035 1.19004
2.8 44.854 25.33192 -42.054 -1.660118876 1.660119
7.7 44.854 25.33192 -37.154 -1.466687038 1.466687
20 44.854 25.33192 -24.854 -0.981133651 0.981134
23 44.854 25.33192 -21.854 -0.862705995 0.862706
6.2 44.854 25.33192 -38.654 -1.525900866 1.525901
18 44.854 25.33192 -26.854 -1.060085421 1.060085
97 44.854 25.33192 52.146 2.058509509 2.05851
69.2 44.854 25.33192 24.346 0.961079901 0.96108
63.5 44.854 25.33192 18.646 0.736067355 0.736067
65 44.854 25.33192 20.146 0.795281183 0.795281
9.9 44.854 25.33192 -34.954 -1.379840091 1.37984
90.2 44.854 25.33192 45.346 1.79007349 1.790073
56 44.854 25.33192 11.146 0.439998216 0.439998
80 44.854 25.33192 35.146 1.387419461 1.387419
58.7 44.854 25.33192 13.846 0.546583106 0.546583
33.1 44.854 25.33192 -11.754 -0.463999555 0.464
31.5 44.854 25.33192 -13.354 -0.527160971 0.527161
54.5 44.854 25.33192 9.646 0.380784389 0.380784
22.4 44.854 25.33192 -22.454 -0.886391526 0.886392
40.3 44.854 25.33192 -4.554 -0.179773181 0.179773
27.2 44.854 25.33192 -17.654 -0.696907277 0.696907
14.4 44.854 25.33192 -30.454 -1.202198608 1.202199
5.6 44.854 25.33192 -39.254 -1.549586397 1.549586
42.2 44.854 25.33192 -2.654 -0.104768999 0.104769
9.5 44.854 25.33192 -35.354 -1.395630445 1.39563
93.1 44.854 25.33192 48.246 1.904553557 1.904554
10.7 44.854 25.33192 -34.154 -1.348259383 1.348259
93.3 44.854 25.33192 48.446 1.912448734 1.912449
50 44.854 25.33192 5.146 0.203142905 0.203143
33.2 44.854 25.33192 -11.654 -0.460051966 0.460052
67 44.854 25.33192 22.146 0.874232953 0.874233
56 44.854 25.33192 11.146 0.439998216 0.439998
49.5 44.854 25.33192 4.646 0.183404963 0.183405
52.7 44.854 25.33192 7.846 0.309727795 0.309728
41.1 44.854 25.33192 -3.754 -0.148192473 0.148192
72.1 44.854 25.33192 27.246 1.075559968 1.07556
50 44.854 25.33192 5.146 0.203142905 0.203143
88 44.854 25.33192 43.146 1.703226542 1.703227
11.8 44.854 25.33192 -33.054 -1.304835909 1.304836
69.5 44.854 25.33192 24.646 0.972922666 0.972923
63 44.854 25.33192 18.146 0.716329413 0.716329
60 44.854 25.33192 15.146 0.597901757 0.597902
66.7 44.854 25.33192 21.846 0.862390188 0.86239
58 44.854 25.33192 13.146 0.518949987 0.51895
67.2 44.854 25.33192 22.346 0.88212813 0.882128
74.9 44.854 25.33192 30.046 1.186092446 1.186092
71.4 44.854 25.33192 26.546 1.047926848 1.047927
71.1 44.854 25.33192 26.246 1.036084083 1.036084
54 44.854 25.33192 9.146 0.361046446 0.361046
19.9 44.854 25.33192 -24.954 -0.985081239 0.985081
49.5 44.854 25.33192 4.646 0.183404963 0.183405
56.8 44.854 25.33192 11.946 0.471578924 0.471579
74 44.854 25.33192 29.146 1.15056415 1.150564
20.4 44.854 25.33192 -24.454 -0.965343296 0.965343
34.5 44.854 25.33192 -10.354 -0.408733315 0.408733
17.2 44.854 25.33192 -27.654 -1.091666129 1.091666
45 44.854 25.33192 0.146 0.005763479 0.005763
82 44.854 25.33192 37.146 1.466371231 1.466371
40 44.854 25.33192 -4.854 -0.191615947 0.191616
16 44.854 25.33192 -28.854 -1.139037191 1.139037
25 44.854 25.33192 -19.854 -0.783754225 0.783754
64.1 44.854 25.33192 19.246 0.759752886 0.759753
39.5 44.854 25.33192 -5.354 -0.211353889 0.211354
72 44.854 25.33192 27.146 1.071612379 1.071612
13 44.854 25.33192 -31.854 -1.257464847 1.257465
37.1 44.854 25.33192 -7.754 -0.306096014 0.306096
67.7 44.854 25.33192 22.846 0.901866073 0.901866
40 44.854 25.33192 -4.854 -0.191615947 0.191616
55.9 44.854 25.33192 11.046 0.436050628 0.436051
51 44.854 25.33192 6.146 0.24261879 0.242619
50 44.854 25.33192 5.146 0.203142905 0.203143
44.2 44.854 25.33192 -0.654 -0.025817229 0.025817
12 44.854 25.33192 -32.854 -1.296940732 1.296941
72 44.854 25.33192 27.146 1.071612379 1.071612
51.6 44.854 25.33192 6.746 0.266304321 0.266304
54.4 44.854 25.33192 9.546 0.3768368 0.376837
44.5 44.854 25.33192 -0.354 -0.013974463 0.013974
61.6 44.854 25.33192 16.746 0.661063173 0.661063
34.1 44.854 25.33192 -10.754 -0.424523669 0.424524
80 44.854 25.33192 35.146 1.387419461 1.387419
61.9 44.854 25.33192 17.046 0.672905939 0.672906
74.6 44.854 25.33192 29.746 1.174249681 1.17425
17 44.854 25.33192 -27.854 -1.099561306 1.099561
10.8 44.854 25.33192 -34.054 -1.344311794 1.344312
44.7 44.854 25.33192 -0.154 -0.006079286 0.006079
11.7 44.854 25.33192 -33.154 -1.308783498 1.308783
97.9 44.854 25.33192 53.046 2.094037806 2.094038
67.5 44.854 25.33192 22.646 0.893970896 0.893971
64 44.854 25.33192 19.146 0.755805298 0.755805
97.7 44.854 25.33192 52.846 2.086142629 2.086143
8.9 44.854 25.33192 -35.954 -1.419315976 1.419316
51.3 44.854 25.33192 6.446 0.254461556 0.254462
56 44.854 25.33192 11.146 0.439998216 0.439998
12.6 44.854 25.33192 -32.254 -1.273255201 1.273255
42.6 44.854 25.33192 -2.254 -0.088978645 0.088979
50 44.854 25.33192 5.146 0.203142905 0.203143
25.7 44.854 25.33192 -19.154 -0.756121105 0.756121
72.4 44.854 25.33192 27.546 1.087402733 1.087403
20.7 44.854 25.33192 -24.154 -0.953500531 0.953501
62.3 44.854 25.33192 17.446 0.688696293 0.688696
41.4 44.854 25.33192 -3.454 -0.136349707 0.13635
50 44.854 25.33192 5.146 0.203142905 0.203143
77.9 44.854 25.33192 33.046 1.304520102 1.30452
10 44.854 25.33192 -34.854 -1.375892502 1.375893
80 44.854 25.33192 35.146 1.387419461 1.387419
61.5 44.854 25.33192 16.646 0.657115585 0.657116
61.1 44.854 25.33192 16.246 0.641325231 0.641325
38.6 44.854 25.33192 -6.254 -0.246882186 0.246882
73.9 44.854 25.33192 29.046 1.146616561 1.146617
30 44.854 25.33192 -14.854 -0.586374799 0.586375
56 44.854 25.33192 11.146 0.439998216 0.439998
39 44.854 25.33192 -5.854 -0.231091832 0.231092
7.4 44.854 25.33192 -37.454 -1.478529804 1.47853
74.9 44.854 25.33192 30.046 1.186092446 1.186092
40 44.854 25.33192 -4.854 -0.191615947 0.191616
43 44.854 25.33192 -1.854 -0.073188291 0.073188
28.8 44.854 25.33192 -16.054 -0.633745861 0.633746
14.5 44.854 25.33192 -30.354 -1.198251019 1.198251
10.8 44.854 25.33192 -34.054 -1.344311794 1.344312
6.6 44.854 25.33192 -38.254 -1.510110512 1.510111
12.6 44.854 25.33192 -32.254 -1.273255201 1.273255
3.4 44.854 25.33192 -41.454 -1.636433345 1.636433
40.6 44.854 25.33192 -4.254 -0.167930416 0.16793
67 44.854 25.33192 22.146 0.874232953 0.874233
33.6 44.854 25.33192 -11.254 -0.444261612 0.444262
67 44.854 25.33192 22.146 0.874232953 0.874233
14 44.854 25.33192 -30.854 -1.217988962 1.217989
22.7 44.854 25.33192 -22.154 -0.874548761 0.874549
69.6 44.854 25.33192 24.746 0.976870255 0.97687
68.7 44.854 25.33192 23.846 0.941341958 0.941342
70 44.854 25.33192 25.146 0.992660609 0.992661
57 44.854 25.33192 12.146 0.479474102 0.479474
56.6 44.854 25.33192 11.746 0.463683747 0.463684
69.4 44.854 25.33192 24.546 0.968975078 0.968975
81.7 44.854 25.33192 36.846 1.454528466 1.454528
70 44.854 25.33192 25.146 0.992660609 0.992661
39.3 44.854 25.33192 -5.554 -0.219249066 0.219249
16.8 44.854 25.33192 -28.054 -1.107456483 1.107456
65.3 44.854 25.33192 20.446 0.807123949 0.807124
15.9 44.854 25.33192 -28.954 -1.14298478 1.142985
57.5 44.854 25.33192 12.646 0.499212044 0.499212
55.7 44.854 25.33192 10.846 0.428155451 0.428155
67.3 44.854 25.33192 22.446 0.886075719 0.886076
10 44.854 25.33192 -34.854 -1.375892502 1.375893
96 44.854 25.33192 51.146 2.019033624 2.019034
57.7 44.854 25.33192 12.846 0.507107221 0.507107
15.7 44.854 25.33192 -29.154 -1.150879957 1.15088
12.2 44.854 25.33192 -32.654 -1.289045555 1.289046
56.1 44.854 25.33192 11.246 0.443945805 0.443946
10.3 44.854 25.33192 -34.554 -1.364049737 1.36405
58 44.854 25.33192 13.146 0.518949987 0.51895
7.5 44.854 25.33192 -37.354 -1.474582215 1.474582
14.4 44.854 25.33192 -30.454 -1.202198608 1.202199
57.5 44.854 25.33192 12.646 0.499212044 0.499212
40.1 44.854 25.33192 -4.754 -0.187668358 0.187668
23.3 44.854 25.33192 -21.554 -0.850863229 0.850863
59 44.854 25.33192 14.146 0.558425872 0.558426
24.2 44.854 25.33192 -20.654 -0.815334933 0.815335
62 44.854 25.33192 17.146 0.676853527 0.676854
45 44.854 25.33192 0.146 0.005763479 0.005763
42 44.854 25.33192 -2.854 -0.112664176 0.112664
60 44.854 25.33192 15.146 0.597901757 0.597902
77.8 44.854 25.33192 32.946 1.300572513 1.300573
73 44.854 25.33192 28.146 1.111088265 1.111088
13.4 44.854 25.33192 -31.454 -1.241674493 1.241674
29 44.854 25.33192 -15.854 -0.625850684 0.625851
97 44.854 25.33192 52.146 2.058509509 2.05851
10 44.854 25.33192 -34.854 -1.375892502 1.375893
21.7 44.854 25.33192 -23.154 -0.914024646 0.914025
42.9 44.854 25.33192 -1.954 -0.07713588 0.077136
23 44.854 25.33192 -21.854 -0.862705995 0.862706
35 44.854 25.33192 -9.854 -0.388995373 0.388995
3.4 44.854 25.33192 -41.454 -1.636433345 1.636433
45 44.854 25.33192 0.146 0.005763479 0.005763
7.9 44.854 25.33192 -36.954 -1.458791861 1.458792
44 44.854 25.33192 -0.854 -0.033712406 0.033712
8 44.854 25.33192 -36.854 -1.454844273 1.454844
33 44.854 25.33192 -11.854 -0.467947143 0.467947
2.6 44.854 25.33192 -42.254 -1.668014053 1.668014
24 44.854 25.33192 -20.854 -0.82323011 0.82323
23.6 44.854 25.33192 -21.254 -0.839020464 0.83902
49.1 44.854 25.33192 4.246 0.167614609 0.167615
1.5 44.854 25.33192 -43.354 -1.711437527 1.711438
57.4 44.854 25.33192 12.546 0.495264456 0.495264
60.9 44.854 25.33192 16.046 0.633430054 0.63343
59.7 44.854 25.33192 14.846 0.586058992 0.586059
1.8 44.854 25.33192 -43.054 -1.699594761 1.699595
63.1 44.854 25.33192 18.246 0.720277001 0.720277

No outliers seen for

Domestic Cars_List Price in K(X).

No value is above 3


Related Solutions

16,184,885 rounded to the nearest ten thousand
16,184,885 rounded to the nearest ten thousand
The following data give the odometer mileage (rounded to the nearest thousand miles) for all 20...
The following data give the odometer mileage (rounded to the nearest thousand miles) for all 20 cars that are for sale at a dealership. 61 88 58 83 71 40 27 38 52 43 27 40 90 43 95 35 28 47 88 76 a. Calculate the values of the three quartiles and the interquartile range. Q1 = Q2 = Q3 = IQR = b. Find the approximate value of the 19th percentile. c. Calculate the percentile rank of 71....
The table below gives information on GPAs and starting salaries (rounded to the nearest thousand dollars)...
The table below gives information on GPAs and starting salaries (rounded to the nearest thousand dollars) of 7 recent college graduates. GPA                       | 2.90   3.81   3.20   2.42   3.94   2.05   2.25 Starting salary        |    38      48     38      35      50      31      37 List the independent variable ___________ and the dependent variable_________. Build a table, with column totals containing x, y, x2, y2, and xy. Calculate average of y & average of x. Show formula & work for a, b, SSxx,...
The following information gives information on GPAs and starting salaries (rounded to the nearest thousand dollars)...
The following information gives information on GPAs and starting salaries (rounded to the nearest thousand dollars) of seven recent college graduates. GPA 2.90 3.81 3.20 2.42 3.94 2.25 2.05 Salary 23 28 23 21 32 22 19 a. Find the regression line of the data above. b. Use the equation of the regression line to predict the value of the salary for a GPA of 3.00. The following information gives information on GPAs and starting salaries (rounded to the nearest...
Given the following data, what is the weighted-average cost of ending inventory rounded to the nearest...
Given the following data, what is the weighted-average cost of ending inventory rounded to the nearest whole dollar? (Do not round in the process of your calculations, only round your final answer.) Sales revenue 100 units at $15 per unit Beginning inventory 40 units at $9 per unit Purchases 80 units at $10 per unit
Data are gathered on each car in the motor pool, regarding number of miles (in thousand...
Data are gathered on each car in the motor pool, regarding number of miles (in thousand miles) driven in a given year, and maintenance costs (in thousand dollars) for that year: Part of the linear regression analysis output are shown in below: Car Number 1 2 3 4 5 Miles Driven (x) 80 29 53 13 15 Repair Costs (y) 3.2 2.15 2.65 2.2 2.325 Construct a 95% confidence interval for the conditional mean of y given x0=50. (A) [2.476,...
Insurance contracts are usually obtained through an agent, who works as an independent contractor. True/False? To...
Insurance contracts are usually obtained through an agent, who works as an independent contractor. True/False? To deem an agreement a per se violation of antitrust law, a court must determine whether the agreement actually injures competition. True/False?
FOR PYTHON: Write a python program for a car salesperson who works a five day week....
FOR PYTHON: Write a python program for a car salesperson who works a five day week. The program should prompt for how many cars were sold on each day and then prompt for the selling price of each car (if any) on that day. After the data for all five days have been entered, the program should report the total number of cars sold and the total sales for the period. See example output. NOTE: duplicate the currency format shown...
A simple random sample of​ front-seat occupants involved in car crashes is obtained. Among 2771occupants not...
A simple random sample of​ front-seat occupants involved in car crashes is obtained. Among 2771occupants not wearing seat​ belts, 38 were killed. Among 7702 occupants wearing seat​ belts, 15 were killed. Use a 0.01 significance level to test the claim that seat belts are effective in reducing fatalities. Complete parts​ (a) through​ (c) below. a) identify test statistic b) identify the p-value c) identify confidence interval
The age for race car drivers were selected at random. The following ages were obtained: 32...
The age for race car drivers were selected at random. The following ages were obtained: 32 32 33 33 41 29 38 32 33 23 27 45 52 29 and 25. (Give three decimals for all number answers.) 1.  What is the average for this sample? 2.  What is the standard deviation for this sample? Use a .05 significance level to test the claim that the mean age of all race drivers is greater than 30 years. 3.  What is the significance level?  ...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT