In: Statistics and Probability
GPA | 2.90 3.81 3.20 2.42 3.94 2.05 2.25
Starting salary | 38 48 38 35 50 31 37
a) Independent variable = GPA
Dependent variable = Starting salary
b)
X | Y | XY | X² | Y² |
2.90 | 38 | 110.2 | 8.41 | 1444 |
3.81 | 48 | 182.88 | 14.5161 | 2304 |
3.20 | 38 | 121.6 | 10.24 | 1444 |
2.42 | 35 | 84.7 | 5.8564 | 1225 |
3.94 | 50 | 197 | 15.5236 | 2500 |
2.05 | 31 | 63.55 | 4.2025 | 961 |
2.25 | 37 | 83.25 | 5.0625 | 1369 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
20.57 | 277 | 843.18 | 63.8111 | 11247 |
c)
x̅ = Ʃx/n = 20.57/7 = 2.938571
y̅ = Ʃy/n = 277/7 = 39.571429
d)
SSxx = Ʃx² - (Ʃx)²/n = 63.8111 - (20.57)²/7 = 3.364686
SSyy = Ʃy² - (Ʃy)²/n = 11247 - (277)²/7 = 285.714286
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 843.18 - (20.57)(277)/7 = 29.195714
Slope, b = SSxy/SSxx = 29.19571/3.36469 = 8.6771
y-intercept, a = y̅ -b* x̅ = 39.57143 - (8.6771)*2.93857 = 14.07315
Regression equation :
ŷ = 14.0732 + (8.6771) x
e)
Predicted value of y at x = 2.05
ŷ = 14.0732 + (8.6771) * 2.05 = 31.8612
f)
Sum of Square error, SSE = SSyy -SSxy²/SSxx = 285.71429 - (29.19571)²/3.36469 = 32.380154
Standard error, se = √(SSE/(n-2)) = √(32.38015/(7-2)) = 2.5448
Correlation coefficient, r = SSxy/√(SSxx*SSyy) = 29.19571/√(3.36469*285.71429) = 0.9416
Coefficient of determination, r² = (SSxy)²/(SSxx*SSyy) = (29.19571)²/(3.36469*285.71429) = 0.8867
88.67% variation in y is explained by the least squares model.
This is a good model.