Question

In: Chemistry

CH4(g)+Cl2(g)---->CH3Cl(g)+HCl(g) A) Use bond energies to cal. delta H My Ans: - 110 KJ/mol B) Use...

CH4(g)+Cl2(g)---->CH3Cl(g)+HCl(g)

A) Use bond energies to cal. delta H
My Ans: - 110 KJ/mol
B) Use the enthalpy of formation to cal. delta H
My Ans: 103 KJ/mol
C) Explain why A and B are not the same?
D) Calculate % error?

Solutions

Expert Solution

Since you have calculated answers of part A and part B. So I am solving part C and part D here:

C) A and B are not same because while calculating bond energies we take the average value.

Like if we talk about a C-H bond then average value of all the C-H bonds in all the known molecule will be the values of bond energy of C-H bond. Now if we use this value to calculate H of reaction then it will surely differ form the value calculated using enthalpy of formation because enthalpy of formation of every molecule is different.

D) % error = (Difference in values / True value) x 100

= (7/103) x 100

= 6.8%


Related Solutions

For the reaction CH4(g) + Cl2(g) ⇌ CH3Cl(g) + HCl(g) + 26.4 kcal predict the effect...
For the reaction CH4(g) + Cl2(g) ⇌ CH3Cl(g) + HCl(g) + 26.4 kcal predict the effect on the equilibrium (will it shift to the left or right, or will there be no change?) for each of the following changes. Be sure to answer all parts: (a) The temperature is increased. (select one of the following: 1) equilibrium shifts to the left, 2) equilibrium shifts to the right, or 3) equilibrium does not change (b) The pressure is increased by decreasing...
If delta H rxn is -75.2 kJ, 2NO(g) + Cl2 (g) <---> 2NOCl(g)
If delta H rxn is -75.2 kJ, 2NO(g) + Cl2 (g) <---> 2NOCl(g) A scientist places four moles of nitrogen monoxide and two moles of chlorine gas into flask A and the same amounts into Flask B, then allows the systems to reach equilibrium. Flask A is at 25 degrees Celsius and Flask B is at 200 degrees Celsius A) In which flask will the reaction occur faster? Explain. B) In which flask will the reaction occur to a greater...
Part A: For the reaction CO(g) + 3H2(g) ---> CH4(g) + H2O(g) (delta)H° = -206.1 kJ...
Part A: For the reaction CO(g) + 3H2(g) ---> CH4(g) + H2O(g) (delta)H° = -206.1 kJ and (delta)S° = -214.7 J/K The standard free energy change for the reaction of 1.54 moles of CO(g) at 293 K, 1 atm would be (?) kJ. This reaction is (reactant, product)(?) favored under standard conditions at 293 K. Assume that (delta)H° and (delta)S° are independent of temperature. Part B: For the reaction I2(g) + Cl2(g) --> 2 ICl(g) (delta)G° = -30.0 kJ and...
CH4(g) + Cl2(g)  CH2Cl2(g) + 2 HCl(g) Use the data in the table below to...
CH4(g) + Cl2(g)  CH2Cl2(g) + 2 HCl(g) Use the data in the table below to calculate the standard enthalpy, ∆H˚, for the reaction above. Substance CH4(g) CH2Cl2(g) HCl(g) ∆Hf˚, kJ•mol-1 –74.6 –95.4 –92.3
CH4(g)+Cl2(g)=CH3Cl(g)+HCl(g) Kc=4.5*10^3 Initial Concentration of the reactants 0.0010 M calculate the equilibrium concentrations
CH4(g)+Cl2(g)=CH3Cl(g)+HCl(g) Kc=4.5*10^3 Initial Concentration of the reactants 0.0010 M calculate the equilibrium concentrations
Consider the equilibrium CH4(g) + H2O(g) <--> CO(g) + 3H2(g), where delta h= 206 KJ. Which...
Consider the equilibrium CH4(g) + H2O(g) <--> CO(g) + 3H2(g), where delta h= 206 KJ. Which of the following disturbances will NOT cause the system to shift to the right to reestablish equilibrium? A.) The partial pressure of CH4 increases. B.) The partial pressure of CO decreases. C.) The volume decreases. D.) The temperature increases. E.) All of these will cause the system to shift to the right.
C: CaCO3 (s) ----> CaO (s) + CO2 (g) delta H= +178 kJ/mol D: PCl3 (g)...
C: CaCO3 (s) ----> CaO (s) + CO2 (g) delta H= +178 kJ/mol D: PCl3 (g) + Cl2 (g) -----> PCl5 (g) delta H= - 88 kJ/mol Classify these changes as either LEFTWARD SHIFT, RIGTHWARD SHIFT, or NO SHIFT System C increase temperature System C decrease temperature System D increase temperature System D decrease temperature
Suppose Delta G^o is 25.0 KJ/mol for a hypothetical reaction in which A converts into B....
Suppose Delta G^o is 25.0 KJ/mol for a hypothetical reaction in which A converts into B. Which of the following statements describes an equlibrium mixture of A and B? a) B has a higher concentration than A. b) Only A is present. c) A and B have equal concentrations. d) Only B is present. e) A has a higher concentration than B. Could you please explain your reasoning behind the answer as well?
Consider the following reaction at 298 K: 4Al(s) + 3O2(g) ==> 2Al2O3(s) Delta H= -3351.4 kJ/mol...
Consider the following reaction at 298 K: 4Al(s) + 3O2(g) ==> 2Al2O3(s) Delta H= -3351.4 kJ/mol Calculate: a. Delta Ssystem = _______J/mol*K b. Delta Ssurroundings = _______J/mol*K c. Delta S universe = _________J/mol*K
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT