Question

In: Mechanical Engineering

4. A wagon of mass 14 tonnes is hauled up an incline of 1 in 20...

4. A wagon of mass 14 tonnes is hauled up an incline of 1 in 20 by a rope which is parallel to the incline and is being wound round a drum of 1 m diameter. The drum, in turn, is driven through a 40 to 1 reduction gear by an electric motor. The frictional resistance to the movement of the wagon is 1.2 kN, and the efficiency of the gear drive is 85 per cent. The bearing friction at the drum and motor shafts may be neglected. The rotating parts of the drum have a mass of 1.25 tonnes with a radius of gyration of 450 mm and the rotating parts on the armature shaft have a mass of 110 kg with a radius of gyration of 125 mm.
At a certain instant the wagon is moving up the slope with a velocity of 1.8 m/s and an acceleration of 0.1 m/s2. Find the torque on the motor shaft and the power being developed. [T= 154 Nm, P=22,24 kW]

Solutions

Expert Solution

TORQUE ON MOTOR SHAFT,

There are four torques generated ,

  1. Torque on drum shaft to accelerate load
  2. Torque on drum to accelerate drum-shaft
  3. Torque on armature to accelerate drum and load
  4. Torque on armature to accelerate armature shaft

Now tension in rope = total forces P1

component of weight + inertia force + frictional resistance (Horizontal forces)

(Where frictional resistance=1.2kN and acceleration is 0.1m/s^2)

SO the torque on the drum to accelerate load is given by ,

Similarly because of presence of inertia, the TORQUE required on drum shaft to accelerate drum shaft,

where is angular acceleration

( Where I1 is mass moment of inertia for drum )

Now torque on armature shaft of motor to accelerate load as well as drum,

As the drum is driven by electric motor with gear ratio (G.R)=40:1

  

And Torque to accelerate armature shaft,

  (Where I2 is mass moment of inertia for armature shaft)

   (Because armature rotates 40 times than that of drum)

So, torque on motor shaft is goven by

2) POWER DEVELOPED BY MOTOR

POWER DEVELOPED WILL BE,


Related Solutions

A crate of mass 10.3 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.3 kg is pulled up a rough incline with an initial speed of 1.43 m/s. The pulling force is 93.0 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.97 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy (related to thermal energy, having the opposite...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.42 m/s. The pulling force is 96N parallel to the incline, which makes an angle of 20.4 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. A) how much work is done by the gravitational force on the crate? B) determine the increase in internal energy of the crate-incline system owing to friction? C) how...
The vegetable production in Oman went up to 399,172 tonnes, from 334,581 tonnes than previous year....
The vegetable production in Oman went up to 399,172 tonnes, from 334,581 tonnes than previous year. Among vegetables, tomato ranked first in terms of production quantity at 116,408 tonnes.” (Reference Times of Oman given below). Explain the post-harvest handling of tomatoes to prevent contamination. Use at least TWO research articles as reference. (write 200 words) ( Reference: Oman produced more than 1.77 million tonnes of agricultural commodities in 2015, Times of Oman, February 12, 2017 https://timesofoman.com/article/102665/oman/oman-produced-more-than-177- million-tonnes-of-agricultural-commodities-in-2015) Note : Write...
A block with mass m1 = 8.5 kg is on an incline with an angle θ...
A block with mass m1 = 8.5 kg is on an incline with an angle θ = 29° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? ) Now with friction, the acceleration is measured to be only a = 3.61 m/s2. What is the coefficient of kinetic friction between the incline and the...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.25 and μs = 0.275. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, what is the magnitude of the acceleration of the block after it...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 31° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, the acceleration is measured to be only a = 3.13 m/s2. What is the coefficient of kinetic friction between the incline and the block? 3)To...
A block with mass m1 = 9.4 kg is on an incline with an angle θ...
A block with mass m1 = 9.4 kg is on an incline with an angle θ = 34° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? m/s2 2) Now with friction, the acceleration is measured to be only a = 3.73 m/s2. What is the coefficient of kinetic friction between the incline and...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
A mass of 6 kg is placed on an incline with a coefficient of static friction...
A mass of 6 kg is placed on an incline with a coefficient of static friction of 1.80 and coefficient of kinetic friction of 1.28. No additional forces are acting on it and it is raised slowly from a small angle and it begins to slide at some angle. If 10 degrees is added to this angle, and the mass started from rest from a vertical height of 28 meters, how much longer would it take to travel down the...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT