Question

In: Physics

A crate of mass 11.0 kg is pulled up a rough incline with an initial speed...

A crate of mass 11.0 kg is pulled up a rough incline with an initial speed of 1.40 m/s. The pulling force is 102 N parallel to the incline, which makes an angle of 19.0° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.94 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction. J (c) How much work is done by the 102-N force on the crate? J (d) What is the change in the kinetic energy of the crate? J (e) What is the speed of the crate after being pulled 4.94 m? m/s

Solutions

Expert Solution

(a) How much work is done by the gravitational force on the crate

Wg = mgdcos (90 + 19)

Wg = 11 * 9.8 * 4.94 * cos 109

Wg = - 173.37 J

-------------------------

(b) Determine the increase in internal energy of the crate–incline system owing to friction

this is same as work done by friction ( note that friction acts opposite to motion)

W = E = umg* cos 19 *d

E = - 201.4 J

--------------------------------

(c) How much work is done by the 102-N force on the crate

W = 102 * 4.94 * cos 0

W = 503.88 J

------------------------------

What is the change in the kinetic energy of the crate

using work energy energy

net work done = change in kinetic energy

change in kinetic energy = - 173.37 - 201.4 + 503.88

change in kinetic energy = 129.1 J

---------------------------------

What is the speed of the crate after being pulled 4.94 m

again use work energy theorem

1/2 * 11 * vf2 - 1/2 * 11 * 1.402 = 129.1

vf = 4.64 m/s


Related Solutions

A crate of mass 10.3 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.3 kg is pulled up a rough incline with an initial speed of 1.43 m/s. The pulling force is 93.0 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.97 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy (related to thermal energy, having the opposite...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.42 m/s. The pulling force is 96N parallel to the incline, which makes an angle of 20.4 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. A) how much work is done by the gravitational force on the crate? B) determine the increase in internal energy of the crate-incline system owing to friction? C) how...
10 kg crate is pulled 4.9 m up a 34 degree incline by a rope angled...
10 kg crate is pulled 4.9 m up a 34 degree incline by a rope angled 16 degree above the incline. The tension in the rope is 125 N, and the crate's coefficient of kinetic friction on the incline is 0.26. How much work is done by: a. Tension? J b. Gravity? J c. Normal Force? J d. What is the increase in thermal energy of the crate and incline? J
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the static case a.    What is the...
A box with mass 1.60 kg is being pulled across a rough surface at a constant...
A box with mass 1.60 kg is being pulled across a rough surface at a constant speed with a coefficient of kinetic friction µk = 0.310. The pulling force has a magnitude of 12.1 N and is directed at an angle 39.7 degrees above horizontal. If the box is dragged a distance of 11.2 m, what is the total energy lost to friction? (Hint: be sure to account for the upward component of the pulling force, and note that the...
A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00...
A crate of mass 50.0 kg slides down a 60.0o incline. The crates acceleration is 4.00 m/s2, and the incline is 10.0 meter long. a) What is the kinetic energy of the crate as it reaches the bottom of the incline? b) How much work is spent in overcoming friction? c) What is the magnitude of friction force that acts on the crate as it slides down the incline? An advertisement claims that a certain 1200kg car can accelerate from...
A man pushing a crate of mass m = 92.0 kg at a speed of  v =...
A man pushing a crate of mass m = 92.0 kg at a speed of  v = 0.880 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 297 N on the crate. A man pushes a crate labeled m, which moves with a velocity vector v to the right, on a...
A man pushing a crate of mass m = 92.0 kg at a speed of v...
A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.845 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.351 and he exerts a constant horizontal force of 288 N on the crate. A man pushes a crate labeled m, which moves with a velocity vector v to the right, on...
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an...
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an angle ?=19.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is ?k=0.305 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of ?=2.89 m/s2 , calculate the tension ?T in the rope. Use ?=9.81 m/s2 for the acceleration due to gravity.
A box of mass 0.200 kg is given an initial speed of 2 m/s up a...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a ramp with an angle of θ = 45° from the horizontal. The coefficients of friction between the box and ramp are μs = .7 and μk = .5 a) How far up the ramp does the box go before it comes to rest? b) Does it start to slide down the ramp after it gets to its maximum distance up the ramp?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT