Question

In: Physics

Based on Euler’s formula: e i = cos +i sin where is a real number. 1a.)...

Based on Euler’s formula: e i = cos +i sin where is a real number.

1a.) What is cos in terms of e i and its complex conjugate?

1b.) What is sin in terms of e i and its complex conjugate?

1c.)Use Euler’s formula on e i (A + B) to develop the trig addition formulas for (A+B)and sin(A+B)

Solutions

Expert Solution


Related Solutions

Consider the vector functions ?(?) and ?(?), where ?(?) = 〈? sin ? , ? cos...
Consider the vector functions ?(?) and ?(?), where ?(?) = 〈? sin ? , ? cos ? , ?^2〉, ?(?) = 〈1, −1, 1〉, and ?′(?) = 〈1, 0, −1〉. Define ?(?) = ?(?) × ?(?) and find ?′(?)
Let F (x, y) = y sin x i – cos x j, where C is...
Let F (x, y) = y sin x i – cos x j, where C is the line segment from (π/2,0) to (π, 1). Then C F•dr is A 1 B 2 C 5/2 D 3 E 7/2
The number of points in (-∞, ∞) for which x2 – x sin x – cos x = 0 is
The number of points in (-∞, ∞) for which x2 – x sin x – cos x = 0 is (a) 6 (b) 4 (c) 2 (d) 0    
Show that at every point on the curve r(t) = <(e^(t)*cos(t)), (e^(t)*sin(t)), e^t> the angle between...
Show that at every point on the curve r(t) = <(e^(t)*cos(t)), (e^(t)*sin(t)), e^t> the angle between the unit tangent vector and the z-axis is the same. Then show that the same result holds true for the unit normal and binormal vectors.
Suppose r(t)=cos(πt)i+sin(πt)j+2tk represents the position of a particle on a helix, where z is the height...
Suppose r(t)=cos(πt)i+sin(πt)j+2tk represents the position of a particle on a helix, where z is the height of the particle. (a) What is t when the particle has height 8? (b) What is the velocity of the particle when its height is 8? (c) When the particle has height 8, it leaves the helix and moves along the tangent line at the constant velocity found in part (b). Find a vector parametric equation for the position of the particle (in terms...
For this parametrized curve: x = e^(2t) sin t , y = cos(4t) find tangent line...
For this parametrized curve: x = e^(2t) sin t , y = cos(4t) find tangent line to curve when t=1
If 3/(2+ cos θ+i sin θ) = a+ib, then [(a-2)2+b2] is
If 3/(2+ cos θ+i sin θ) = a+ib, then [(a-2)2+b2] is
Consider the function given as example in lecture: f(x, y) = (e x cos(y), ex sin(y))...
Consider the function given as example in lecture: f(x, y) = (e x cos(y), ex sin(y)) (6.2) Denote a = (0, π/3) and b = f(a). Let f −1 be a continuous inverse of f defined in a neighborhood of b. Find an explicit formula for f −1 and compute Df−1 (b). Compare this with the derivative formula given by the Inverse Function Theorem.
1) Write a program in C++ sin(x) can be approximately calculated using the following formula, where...
1) Write a program in C++ sin(x) can be approximately calculated using the following formula, where n! is factorial(n) – for example 3!=3*2*1 = 6 (the function in previous problem). The more terms we use in the series, the higher will be accuracy of the calculations. By using infinite terms in the series we will have the exact value. Hint 1: For n! simply use (copy and paste) the factorialFunc(n)from previous problem. Hint 2: This problems is similar to the...
Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=sin(x)i+cos(y)j+4xzkF(x,y,z)=sin(x)i+cos(y)j+4xzk and C is given by the vector function r(t)=t3i−t2j+tkr(t)=t3i−t2j+tk...
Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=sin(x)i+cos(y)j+4xzkF(x,y,z)=sin(x)i+cos(y)j+4xzk and C is given by the vector function r(t)=t3i−t2j+tkr(t)=t3i−t2j+tk , 0≤t≤10≤t≤1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT