Question

In: Advanced Math

Suppose r(t)=cos(πt)i+sin(πt)j+2tk represents the position of a particle on a helix, where z is the height...

Suppose r(t)=cos(πt)i+sin(πt)j+2tk represents the position of a particle on a helix, where z is the height of the particle. (a) What is t when the particle has height 8? (b) What is the velocity of the particle when its height is 8? (c) When the particle has height 8, it leaves the helix and moves along the tangent line at the constant velocity found in part (b). Find a vector parametric equation for the position of the particle (in terms of the original parameter t) as it moves along this tangent line.

Solutions

Expert Solution

Kindly give a thumbs up.


Related Solutions

Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
Let r(t) = (cos(πt), sin(πt), 3t). Calculate r'(t), T(t) and evaluate T(1).
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2...
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the average velocity for the time interval from 1.00 s to 3.00 s. (b) Find the instantaneous velocity at t = 1.00 s. (c) Find the average acceleration from 1.00 s to 3.00 s. (d) Find the instantaneous acceleration at t = 1.00 s.
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j...
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the momentum of the particle at time t = 1.00 s. (b) Find the angular momentum about the origin at time t = 3.00 s.
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j...
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the momentum of the particle at time t = 1.00 s. (b) Find the angular momentum about the origin at time t = 3.00 s.
Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=sin(x)i+cos(y)j+4xzkF(x,y,z)=sin(x)i+cos(y)j+4xzk and C is given by the vector function r(t)=t3i−t2j+tkr(t)=t3i−t2j+tk...
Evaluate the line integral ∫CF⋅dr∫CF⋅dr, where F(x,y,z)=sin(x)i+cos(y)j+4xzkF(x,y,z)=sin(x)i+cos(y)j+4xzk and C is given by the vector function r(t)=t3i−t2j+tkr(t)=t3i−t2j+tk , 0≤t≤10≤t≤1.
The position of a particle is r={(3t3−2t)i−(4t1/2+t)j+(3t2−2)k}m, where t is in seconds. Part A Determine the...
The position of a particle is r={(3t3−2t)i−(4t1/2+t)j+(3t2−2)k}m, where t is in seconds. Part A Determine the magnitude of the particle's velocity when t = 0.5 s . Express your answer with the appropriate units. v=? Part B Determine the magnitude of the particle's acceleration when t = 0.5 s . Express your answer with the appropriate units. a=?
The position of a particle in cm is given by x = (3) cos 9?t, where...
The position of a particle in cm is given by x = (3) cos 9?t, where t is in seconds.
Calculate the Frenet framing, curvature and torsion of the helix (a cos(t), a sin(t), bt)
Calculate the Frenet framing, curvature and torsion of the helix (a cos(t), a sin(t), bt)
Find the point of intersection of the tangent lines to the curve r(t) = 5 sin(πt),...
Find the point of intersection of the tangent lines to the curve r(t) = 5 sin(πt), 2 sin(πt), 6 cos(πt) at the points where t = 0 and t = 0.5. (x, y, z) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT