Question

In: Electrical Engineering

Assume a transmission line with ZL = 100 − j25Ω and Z0 = 50Ω. Using the...

Assume a transmission line with ZL = 100 − j25Ω and Z0 = 50Ω. Using the smith chart, find i) the normalised load impedance; ii) the corresponding reflection coefficient; iii)
the standing wave ratio; iv) the distance between the load and the first voltage maximum; v)
the distance between the load and the first voltage minimum; vi) the normalised admittance;
vii) the input impedance at 0.2λ from the load. (Show all steps on the Smith chart)

Solutions

Expert Solution


Related Solutions

Assume a transmission line with ZL = 100 − j25 Ω and Z0 = 50 Ω....
Assume a transmission line with ZL = 100 − j25 Ω and Z0 = 50 Ω. Using the smith chart, find i) the normalised load impedance; ii) the corresponding reflection coefficient; iii) the standing wave ratio; iv) the distance between the load and the first voltage maximum; v) the distance between the load and the first voltage minimum; vi) the normalised admittance; vii) the input impedance at 0.2λ from the load. (Show all steps on the Smith chart)
Derive the input impedance of the transmission line of Z0, length ‘l’ and terminated with Zl.
Derive the input impedance of the transmission line of Z0, length ‘l’ and terminated with Zl.
Assume a transmission line with ZL = 65 + j40Ω and Zo = 30Ω. If the...
Assume a transmission line with ZL = 65 + j40Ω and Zo = 30Ω. If the frequency of the line is 2GHz, use the Smith Chart to find: i) the reflection coefficient; ii) the distance to the first voltage maximum; iii) the voltage standing wave ratio; iv) the admittance of the load; v) the position of the short-circuited stub on the main line for a perfect impedance matching; vi) the length of the short-circuited stub. (Show all steps on the...
Assume a transmission line with ZL = 65 + j40 Ω and Zo = 30 Ω....
Assume a transmission line with ZL = 65 + j40 Ω and Zo = 30 Ω. If the frequency of the line is 2GHz, use the Smith Chart to find: i) the reflection coefficient; ii) the distance to the first voltage maximum; iii) the voltage standing wave ratio; iv) the admittance of the load; v) the position of the short-circuited stub on the main line for a perfect impedance matching; vi) the length of the short-circuited stub. (Show all steps...
Assume a transmission line with ZL = 65 + j40 Ω and Zo = 60 Ω....
Assume a transmission line with ZL = 65 + j40 Ω and Zo = 60 Ω. If the frequency of the line is 2GHz, use the Smith Chart to find: i) the reflection coefficient; ii) the distance to the first voltage maximum; iii) the voltage standing wave ratio; iv) the admittance of the load; v) the position of the short-circuited stub on the main line for a perfect impedance matching; vi) the length of the short-circuited stub. (Show all steps...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL = ZL/Z0 = 1 + j1 is l = 2.25λz , there are a total of (A) 2 voltage maxima and 2 voltage minima (B) 2 voltage maxima and 3 voltage minima (C) 3 voltage maxima and 2 voltage minima (D) 4 voltage maxima and 4 voltage minima (E) 4 voltage maxima and 5 voltage minima (F) 5 voltage maxima and 4 voltage minima...
A 50 ohm transmission line has an unknown load impedance ZL. A voltage maximum occurs at...
A 50 ohm transmission line has an unknown load impedance ZL. A voltage maximum occurs at z = -0.15(wavelength). At z = -0.20(wavelength) the real part of the impedance is 30 ohms. Find ZL using the Smith chart.
A 100 ohms load is connected to a 50 ohms transmission line. Determine the value of...
A 100 ohms load is connected to a 50 ohms transmission line. Determine the value of the reactance to put in series at the input to the line and the length in wavelengths of the shortest transmission line to match with a 50 ohms source.
Draw the equivalent circuit of a transmission line and hence write the transmission line equations for...
Draw the equivalent circuit of a transmission line and hence write the transmission line equations for an elemental section of a transmission line.    
8. A 100 W load is connected to a 50 W transmission line. Determine the value...
8. A 100 W load is connected to a 50 W transmission line. Determine the value of the reactance to put in series at the input to the line and the length in wavelengths of the shortest transmision line to match with a 50 W source.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT