Question

In: Electrical Engineering

Assume a transmission line with ZL = 65 + j40Ω and Zo = 30Ω. If the...

Assume a transmission line with ZL = 65 + j40Ω and Zo = 30Ω. If the frequency of the
line is 2GHz, use the Smith Chart to find: i) the reflection coefficient; ii) the distance to the
first voltage maximum; iii) the voltage standing wave ratio; iv) the admittance of the load;
v) the position of the short-circuited stub on the main line for a perfect impedance matching;
vi) the length of the short-circuited stub. (Show all steps on the Smith chart)

Solutions

Expert Solution


Related Solutions

Assume a transmission line with ZL = 65 + j40 Ω and Zo = 30 Ω....
Assume a transmission line with ZL = 65 + j40 Ω and Zo = 30 Ω. If the frequency of the line is 2GHz, use the Smith Chart to find: i) the reflection coefficient; ii) the distance to the first voltage maximum; iii) the voltage standing wave ratio; iv) the admittance of the load; v) the position of the short-circuited stub on the main line for a perfect impedance matching; vi) the length of the short-circuited stub. (Show all steps...
Assume a transmission line with ZL = 65 + j40 Ω and Zo = 60 Ω....
Assume a transmission line with ZL = 65 + j40 Ω and Zo = 60 Ω. If the frequency of the line is 2GHz, use the Smith Chart to find: i) the reflection coefficient; ii) the distance to the first voltage maximum; iii) the voltage standing wave ratio; iv) the admittance of the load; v) the position of the short-circuited stub on the main line for a perfect impedance matching; vi) the length of the short-circuited stub. (Show all steps...
Assume a transmission line with ZL = 100 − j25Ω and Z0 = 50Ω. Using the...
Assume a transmission line with ZL = 100 − j25Ω and Z0 = 50Ω. Using the smith chart, find i) the normalised load impedance; ii) the corresponding reflection coefficient; iii) the standing wave ratio; iv) the distance between the load and the first voltage maximum; v) the distance between the load and the first voltage minimum; vi) the normalised admittance; vii) the input impedance at 0.2λ from the load. (Show all steps on the Smith chart)
Assume a transmission line with ZL = 100 − j25 Ω and Z0 = 50 Ω....
Assume a transmission line with ZL = 100 − j25 Ω and Z0 = 50 Ω. Using the smith chart, find i) the normalised load impedance; ii) the corresponding reflection coefficient; iii) the standing wave ratio; iv) the distance between the load and the first voltage maximum; v) the distance between the load and the first voltage minimum; vi) the normalised admittance; vii) the input impedance at 0.2λ from the load. (Show all steps on the Smith chart)
Assuming that the length of a lossless transmission line with the normalized load impedance of zL...
Assuming that the length of a lossless transmission line with the normalized load impedance of zL = ZL/Z0 = 1 + j1 is l = 2.25λz , there are a total of (A) 2 voltage maxima and 2 voltage minima (B) 2 voltage maxima and 3 voltage minima (C) 3 voltage maxima and 2 voltage minima (D) 4 voltage maxima and 4 voltage minima (E) 4 voltage maxima and 5 voltage minima (F) 5 voltage maxima and 4 voltage minima...
Derive the input impedance of the transmission line of Z0, length ‘l’ and terminated with Zl.
Derive the input impedance of the transmission line of Z0, length ‘l’ and terminated with Zl.
Electromagnetic Waves: Design single stub matching network for the transmission line of Zo = 50 ohms...
Electromagnetic Waves: Design single stub matching network for the transmission line of Zo = 50 ohms terminated with Z1 = 100+ j100 ohms. Find SWR and Reflection Coefficient .
A 50 ohm transmission line has an unknown load impedance ZL. A voltage maximum occurs at...
A 50 ohm transmission line has an unknown load impedance ZL. A voltage maximum occurs at z = -0.15(wavelength). At z = -0.20(wavelength) the real part of the impedance is 30 ohms. Find ZL using the Smith chart.
An input transmission line of characteristic impedance Z01 splits off into three identical output transmission lines...
An input transmission line of characteristic impedance Z01 splits off into three identical output transmission lines having characteristic impedance Z02 = 3Z01. This represents a four-port system. Find all 16 of the S parameters for this system. Note: Many of the 16 Sij parameters will be identical. There should be only four values that are distinct. SHOW WORK!!
Which of these systems needs to be treated as a transmission line system and why?
(Pre-Lab) Which of these systems needs to be treated as a transmission line system and why? Justify your answer quantitatively. Indicate any assumptions that you are making. (a) Integrated circuit at high frequencies (500 MHz - 1 GHz) (b) Electrical lines running through your house (c) Electrical lines connecting cities separated by hundreds of kilometers (d) VHF antenna that leads from a rabbit ear antenna to your television  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT