Question

In: Statistics and Probability

Let X1,X2,...,Xn be i.i.d. (independent and identically distributed) from the Bernoulli distribution f(x)=​p^x(1-p)^1-x, x=0,1,p∈(0,1) where p...

  1. Let X1,X2,...,Xn be i.i.d. (independent and identically distributed) from the Bernoulli distribution f(x)=​p^x(1-p)^1-x, x=0,1,p∈(0,1) where p is unknown parameter. Find the UMVUE of p parameter and calculate MSE (Mean Square Error) of this UMVUE estimator.

Solutions

Expert Solution


Related Solutions

1. Let X1, X2 be i.i.d with this distribution: f(x) = 3e cx, x ≥ 0...
1. Let X1, X2 be i.i.d with this distribution: f(x) = 3e cx, x ≥ 0 a. Find the value of c b. Recognize this as a famous distribution that we’ve learned in class. Using your knowledge of this distribution, find the t such that P(X1 > t) = 0.98. c. Let M = max(X1, X2). Find P(M < 10)
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (...
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. ( a) Compute the cdf of Y := min(X1, . . . , Xn). (b) Use (a) to compute the pdf of Y . (c) Find E(Y ).
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2? (Note: The formulas we did were for the continuous case, so they don’t directly apply here, but you...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function; P(X = x) = λx/ (x!(eλ − 1)), x = 1, 2, 3... Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s. 1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ.
Let X1,..., Xn be an i.i.d. sample from a geometric distribution with parameter p. U =...
Let X1,..., Xn be an i.i.d. sample from a geometric distribution with parameter p. U = ( 1, if X1 = 1, 0, if X1 > 1) find a sufficient statistic T for p. find E(U|T)
Let X1. . . . Xn be i.i.d f(x; θ) = θ(1 − θ)^x x =...
Let X1. . . . Xn be i.i.d f(x; θ) = θ(1 − θ)^x x = 0.. Is there a function of θ for which there exists an unbiased estimator of θ whose variance achieves the CRLB? If so, find it
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for µ1µ2.
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) =...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) = 1/ab * (x/a)^{(1-b)/b} 0 <= x <= a ,,,,, b < 1 then, find a two dimensional sufficient statistic for (a, b)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT