Question

In: Statistics and Probability

Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...

Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for µ1µ2.

Solutions

Expert Solution

hii..if you have any doubt please ask by comment. thanks..


Related Solutions

Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a Poisson distribution with unknown mean µ. It is desired to test the following hypotheses H0 : µ = µ0         versus     H1 : µ not equal to µ0 where µ0 > 0 is a given constant. Derive the likelihood ratio test statistic
(a) Suppose X1, ..., Xn1 i.i.d. ∼ N(µ1, σ2 1 ) and Y1, ...Yn2 i.i.d. ∼...
(a) Suppose X1, ..., Xn1 i.i.d. ∼ N(µ1, σ2 1 ) and Y1, ...Yn2 i.i.d. ∼ N(µ2, σ2 2 ) are independent Normal samples. Suggest an unbiased estimator for µ1 − µ2 and find its’ standard error. Now Suppose n1 = 100, n2 = 200, it is known that σ 2 1 = σ 2 2 = 1, and we calculate X¯ = 5.7, Y¯ = 5.2. Find a 2-standard-error bound on the error of estimation. (b) Suppose X ∼...
Let X1,X2,...,Xn be i.i.d. Gamma random variables with parameters α and λ. The likelihood function is...
Let X1,X2,...,Xn be i.i.d. Gamma random variables with parameters α and λ. The likelihood function is difficult to differentiate because of the gamma function. Rather than finding the maximum likelihood estimators, what are the method of moments estimators of both parameters α and λ?
Let X1, . . . , Xn be i.i.d. samples from Uniform(0, θ). Show that for...
Let X1, . . . , Xn be i.i.d. samples from Uniform(0, θ). Show that for any α ∈ (0, 1), there is a cn,α, such that [max(X1,...,Xn),cn,α max(X1,...,Xn)] is a 1−α confidence interval of θ.
R simulation: Let X1, . . . , Xn be i.i.d. random variables from a uniform...
R simulation: Let X1, . . . , Xn be i.i.d. random variables from a uniform distribution on [0, 2]. Generate and plot 10 paths of sample means from n = 1 to n = 40 in one figure for each case. Give some comments to empirically check the Law of Large Numbers. (a) When n is large, X1 + · · · + Xn/n  converges to E[Xi]. (b) When n is large, X1^2+ · · · + Xn^2/n converges to...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
Consider the independent observations x1, x2, . . . , xn from the gamma distribution with...
Consider the independent observations x1, x2, . . . , xn from the gamma distribution with pdf f(x) = (1/ Γ(α)β^α)x^(α−1)e ^(−x/β), x > 0 and 0 otherwise. a. Write out the likelihood function b. Write out a set of equations that give the maximum likelihood estimators of α and β. c. Assuming α is known, find the likelihood estimator Bˆ of β. d. Find the expected value and variance of Bˆ
: Let X1, X2, . . . , Xn be a random sample from the normal...
: Let X1, X2, . . . , Xn be a random sample from the normal distribution N(µ, 25). To test the hypothesis H0 : µ = 40 against H1 : µne40, let us define the three critical regions: C1 = {x¯ : ¯x ≥ c1}, C2 = {x¯ : ¯x ≤ c2}, and C3 = {x¯ : |x¯ − 40| ≥ c3}. (a) If n = 12, find the values of c1, c2, c3 such that the size of...
. Let X1, X2, . . . , Xn be a random sample from a normal...
. Let X1, X2, . . . , Xn be a random sample from a normal population with mean zero but unknown variance σ 2 . (a) Find a minimum-variance unbiased estimator (MVUE) of σ 2 . Explain why this is a MVUE. (b) Find the distribution and the variance of the MVUE of σ 2 and prove the consistency of this estimator. (c) Give a formula of a 100(1 − α)% confidence interval for σ 2 constructed using the...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses H0 : µ = µ0 and H1 : µ (not equal)= µ0 and the test statistic (X bar − µ0)/ (S/√ n). Note that S has been used as σ is unknown. a. What is the distribution of the test statistic when H0 is true? b. What is the type I error of an α−level test of this type? Prove it. c. What is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT